scispace - formally typeset
Search or ask a question

Showing papers by "Howard Hughes Medical Institute published in 1999"


Journal ArticleDOI
TL;DR: This review focuses on the two most well-studied pathways of caspase activation: the cell surface death receptor pathway and the mitochondria-initiated pathway.
Abstract: ▪ Abstract Caspase activation plays a central role in the execution of apoptosis. The key components of the biochemical pathways of caspase activation have been recently elucidated. In this review, we focus on the two most well-studied pathways of caspase activation: the cell surface death receptor pathway and the mitochondria-initiated pathway. In the cell surface death receptor pathway, activation of caspase-8 following its recruitment to the death-inducing signaling complex (DISC) is the critical event that transmits the death signal. This event is regulated at several different levels by various viral and mammalian proteins. Activated caspase-8 can activate downstream caspases by direct cleavage or indirectly by cleaving Bid and inducing cytochrome c release from the mitochondria. In the mitochondrial-initiated pathway, caspase activation is triggered by the formation of a multimeric Apaf-1/cytochrome c complex that is fully functional in recruiting and activating procaspase-9. Activated caspase-9 wil...

2,579 citations


Journal ArticleDOI
05 Mar 1999-Cell
TL;DR: Using a combination of calcium imaging and single-cell RT-PCR to identify odorant receptors (ORs) for odorants with related structures but varied odors, it is found that one OR recognizes multiple odorants and that one odorant is recognized by multiple ORs, but that different odorants are recognized by different combinations of ORs.

2,101 citations


Journal ArticleDOI
TL;DR: Iron has the capacity to accept and donate electrons readily, interconverting between ferric (Fe2+) and ferrous (Fe3+) forms, which makes it a useful component of cytochromes, oxygen-binding molecules, and many enzymes.
Abstract: Iron has the capacity to accept and donate electrons readily, interconverting between ferric (Fe2+) and ferrous (Fe3+) forms. This capability makes it a useful component of cytochromes, oxygen-bind...

2,047 citations


Journal ArticleDOI
22 Apr 1999-Nature
TL;DR: P63 is essential for several aspects of ectodermal differentiation during embryogenesis, including hair follicles, teeth and mammary glands, which are absent in p63-deficient mice.
Abstract: The p53 tumour suppressor is a transcription factor that regulates the progression of the cell through its cycle and cell death (apoptosis) in response to environmental stimuli such as DNA damage and hypoxia1,2. Even though p53 modulates these critical cellular processes, mice that lack p53 are developmentally normal3, suggesting that p53-related proteins might compensate for the functions of p53 during embryogenesis. Two p53 homologues, p63 and p73, are known4,5 and here we describe the function of p63 in vivo. Mice lacking p63 are born alive but have striking developmental defects. Their limbs are absent or truncated, defects that are caused by a failure of the apical ectodermal ridge to differentiate. The skin of p63-deficient mice does not progress past an early developmental stage: it lacks stratification and does not express differentiation markers. Structures dependent upon epidermal–mesenchymal interactions during embryonic development, such as hair follicles, teeth and mammary glands, are absent in p63-deficient mice. Thus, in contrast to p53, p63 is essential for several aspects of ectodermal differentiation during embryogenesis.

2,011 citations


Journal ArticleDOI
23 Sep 1999-Nature
TL;DR: Results suggest that the transplantation of different stem cell populations, using the procedures of bone marrow transplantation, might provide an unanticipated avenue for treating muscular dystrophy as well as other diseases where the systemic delivery of therapeutic cells to sites throughout the body is critical.
Abstract: The development of cell or gene therapies for diseases involving cells that are widely distributed throughout the body has been severely hampered by the inability to achieve the disseminated delivery of cells or genes to the affected tissues or organ. Here we report the results of bone marrow transplantation studies in the mdx mouse, an animal model of Duchenne's muscular dystrophy, which indicate that the intravenous injection of either normal haematopoietic stem cells or a novel population of muscle-derived stem cells into irradiated animals results in the reconstitution of the haematopoietic compartment of the transplanted recipients, the incorporation of donor-derived nuclei into muscle, and the partial restoration of dystrophin expression in the affected muscle. These results suggest that the transplantation of different stem cell populations, using the procedures of bone marrow transplantation, might provide an unanticipated avenue for treating muscular dystrophy as well as other diseases where the systemic delivery of therapeutic cells to sites throughout the body is critical. Our studies also suggest that the inherent developmental potential of stem cells isolated from diverse tissues or organs may be more similar than previously anticipated.

1,937 citations


Journal ArticleDOI
TL;DR: Findings both confirm and expand the current known spectrum of physiological functions regulated by PPAR gamma, implicating a previously unrecognized dependence of the developing heart on a functional placenta.

1,813 citations


Journal ArticleDOI
TL;DR: An extension of the infomax algorithm of Bell and Sejnowski (1995) is presented that is able blindly to separate mixed signals with sub- and supergaussian source distributions and is effective at separating artifacts such as eye blinks and line noise from weaker electrical signals that arise from sources in the brain.
Abstract: An extension of the infomax algorithm of Bell and Sejnowski (1995) is presented that is able blindly to separate mixed signals with sub- and supergaussian source distributions. This was achieved by using a simple type of learning rule first derived by Girolami (1997) by choosing negentropy as a projection pursuit index. Parameterized probability distributions that have sub- and supergaussian regimes were used to derive a general learning rule that preserves the simple architecture proposed by Bell and Sejnowski (1995), is optimized using the natural gradient by Amari (1998), and uses the stability analysis of Cardoso and Laheld (1996) to switch between sub- and supergaussian regimes. We demonstrate that the extended infomax algorithm is able to separate 20 sources with a variety of source distributions easily. Applied to high-dimensional data from electroencephalographic recordings, it is effective at separating artifacts such as eye blinks and line noise from weaker electrical signals that arise from sou...

1,795 citations


Journal ArticleDOI
09 Sep 1999-Nature
TL;DR: The structure of the histone deacetylase catalytic core is described, as revealed by the crystal structure of a homologue from the hyperthermophilic bacterium Aquifex aeolicus, and it is established that the residues that make up the active site and contact the inhibitors are conserved across the HDAC family.
Abstract: Histone deacetylases (HDACs) mediate changes in nucleosome conformation and are important in the regulation of gene expression HDACs are involved in cell-cycle progression and differentiation, and their deregulation is associated with several cancers HDAC inhibitors, such as trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), have anti-tumour effects, as they can inhibit cell growth, induce terminal differentiation and prevent the formation of tumours in mice models, and they are effective in the treatment of promyelocytic leukemia Here we describe the structure of the histone deacetylase catalytic core, as revealed by the crystal structure of a homologue from the hyperthermophilic bacterium Aquifex aeolicus, that shares 352% identity with human HDAC1 over 375 residues, deacetylates histones in vitro and is inhibited by TSA and SAHA The deacetylase, deacetylase-TSA and deacetylase-SAHA structures reveal an active site consisting of a tubular pocket, a zinc-binding site and two Asp-His charge-relay systems, and establish the mechanism of HDAC inhibition The residues that make up the active site and contact the inhibitors are conserved across the HDAC family These structures also suggest a mechanism for the deacetylation reaction and provide a framework for the further development of HDAC inhibitors as antitumour agents

1,674 citations


Journal ArticleDOI
29 Oct 1999-Science
TL;DR: In vitro, monastrol specifically inhibited the motility of the mitotic kinesin Eg5, a motor protein required for spindle bipolarity, and will therefore be a particularly useful tool for studying mitotic mechanisms.
Abstract: Small molecules that perturb specific protein functions are valuable tools for dissecting complex processes in mammalian cells. A combination of two phenotype-based screens, one based on a specific posttranslational modification, the other visualizing microtubules and chromatin, was used to identify compounds that affect mitosis. One compound, here named monastrol, arrested mammalian cells in mitosis with monopolar spindles. In vitro, monastrol specifically inhibited the motility of the mitotic kinesin Eg5, a motor protein required for spindle bipolarity. All previously known small molecules that specifically affect the mitotic machinery target tubulin. Monastrol will therefore be a particularly useful tool for studying mitotic mechanisms.

1,629 citations


Journal ArticleDOI
TL;DR: This work describes a cDNA microarray-based CGH method, and its application to DNA copy-number variation analysis in breast cancer cell lines and tumours, and identifies gene amplifications and deletions genome-wide and with high resolution.
Abstract: Gene amplifications and deletions frequently contribute to tumorigenesis. Characterization of these DNA copy-number changes is important for both the basic understanding of cancer and its diagnosis. Comparative genomic hybridization (CGH) was developed to survey DNA copy-number variations across a whole genome1. With CGH, differentially labelled test and reference genomic DNAs are co-hybridized to normal metaphase chromosomes, and fluorescence ratios along the length of chromosomes provide a cytogenetic representation of DNA copynumber variation. CGH, however, has a limited (∼20 Mb) mapping resolution, and higher-resolution techniques, such as fluorescence in situ hybridization (FISH), are prohibitively labour-intensive on a genomic scale. Array-based CGH, in which fluorescence ratios at arrayed DNA elements provide a locusby-locus measure of DNA copy-number variation, represents another means of achieving increased mapping resolution2‐4. Published array CGH methods have relied on large genomic clone (for example BAC) array targets and have covered only a small fraction of the human genome. cDNAs representing over 30,000 radiation-hybrid (RH)‐mapped human genes5,6 provide

1,558 citations


Journal ArticleDOI
09 Dec 1999-Nature
TL;DR: It is found that p25, a truncated form of p35, accumulates in neurons in the brains of patients with Alzheimer's disease, and this accumulation correlates with an increase in Cdk5 kinase activity.
Abstract: Cyclin-dependent kinase 5 (Cdk5) is required for proper development of the mammalian central nervous system. To be activated, Cdk5 has to associate with its regulatory subunit, p35. We have found that p25, a truncated form of p35, accumulates in neurons in the brains of patients with Alzheimer's disease. This accumulation correlates with an increase in Cdk5 kinase activity. Unlike p35, p25 is not readily degraded, and binding of p25 to Cdk5 constitutively activates Cdk5, changes its cellular location and alters its substrate specificity. In vivo the p25/Cdk5 complex hyperphosphorylates tau, which reduces tau's ability to associate with microtubules. Moreover, expression of the p25/Cdk5 complex in cultured primary neurons induces cytoskeletal disruption, morphological degeneration and apoptosis. These findings indicate that cleavage of p35, followed by accumulation of p25, may be involved in the pathogenesis of cytoskeletal abnormalities and neuronal death in neurodegenerative diseases.

Journal ArticleDOI
29 Jan 1999-Science
TL;DR: Data suggest that beta-arrestin binding, which terminates receptor-G protein coupling, also initiates a second wave of signal transduction in which the "desensitized" receptor functions as a critical structural component of a mitogenic signaling complex.
Abstract: The Ras-dependent activation of mitogen-activated protein (MAP) kinase pathways by many receptors coupled to heterotrimeric guanine nucleotide binding proteins (G proteins) requires the activation of Src family tyrosine kinases. Stimulation of beta2 adrenergic receptors resulted in the assembly of a protein complex containing activated c-Src and the receptor. Src recruitment was mediated by beta-arrestin, which functions as an adapter protein, binding both c-Src and the agonist-occupied receptor. beta-Arrestin 1 mutants, impaired either in c-Src binding or in the ability to target receptors to clathrin-coated pits, acted as dominant negative inhibitors of beta2 adrenergic receptor-mediated activation of the MAP kinases Erk1 and Erk2. These data suggest that beta-arrestin binding, which terminates receptor-G protein coupling, also initiates a second wave of signal transduction in which the "desensitized" receptor functions as a critical structural component of a mitogenic signaling complex.

Journal ArticleDOI
TL;DR: The evidence implicating neurotrophins as molecular mediators of synaptic and morphological plasticity, and the rules and mechanisms by which they exert their effects remain intriguingly elusive are discussed.
Abstract: Despite considerable evidence that neuronal activity influences the organization and function of circuits in the developing and adult brain, the molecular signals that translate activity into structural and functional changes in connections remain largely obscure. This review discusses the evidence implicating neurotrophins as molecular mediators of synaptic and morphological plasticity. Neurotrophins are attractive candidates for these roles because they and their receptors are expressed in areas of the brain that undergo plasticity, activity can regulate their levels and secretion, and they regulate both synaptic transmission and neuronal growth. Although numerous experiments show demonstrable effects of neurotrophins on synaptic plasticity, the rules and mechanisms by which they exert their effects remain intriguingly elusive.

Journal ArticleDOI
16 Apr 1999-Cell
TL;DR: A mechanism for acquired arrhythmia is revealed: genetically based reduction in potassium currents that remains clinically silent until combined with additional stressors.

Journal ArticleDOI
TL;DR: The aim of this monograph is to clarify the role of Incretin in the development of Glucagon-Related Peptides in women and to provide a mechanistic basis for future research into their role in women's health.
Abstract: I. Introduction II. History of the Incretin Concept: Discovery of Gastric Inhibitory Polypeptide III. Discovery of GLP-1 IV. Structures of GLPs and Family of Glucagon-Related Peptides V. Tissue Distribution of the Expression of GLPs A. Pancreatic α-cells B. Intestinal L cells C. Central nervous system VI. Proglucagon Biosynthesis A. Organization/structure of the proglucagon gene B. Regulation of glucagon gene expression C. Posttranslational processing of proglucagon VII. Regulation of GLP Secretion A. Overview B. Intracellular signals C. Carbohydrates D. Fats E. Proteins F. Endocrine G. Neural H. GLP-2 VIII. Metabolism of GLPs A. GLP-1 B. GLP-2 IX. Physiological Actions of GLPs A. Overview B. Pancreatic islets C. Counterregulatory actions of GLP-1 and leptin on β-cells D. Stomach E. Lung F. Brain G. Liver, skeletal muscle, and fat H. Pituitary, hypothalamus, and thyroid I. Cardiovascular system J. GLP-2 X. GLP Receptors A. Structure B. Signaling C. Distribution D. Regulation E. GLP-2 XI. Pathophysiology o...

Journal ArticleDOI
TL;DR: By selecting high-affinity and -specificity nucleic acid ligands for proteins, promising new therapeutic and diagnostic reagents have been identified and the existence of such RNA enzymes supports the notion that ribozymes could have directed a primitive metabolism before the evolution of protein synthesis.
Abstract: In vitro selection allows rare functional RNA or DNA molecules to be isolated from pools of over 10(15) different sequences. This approach has been used to identify RNA and DNA ligands for numerous small molecules, and recent three-dimensional structure solutions have revealed the basis for ligand recognition in several cases. By selecting high-affinity and -specificity nucleic acid ligands for proteins, promising new therapeutic and diagnostic reagents have been identified. Selection experiments have also been carried out to identify ribozymes that catalyze a variety of chemical transformations, including RNA cleavage, ligation, and synthesis, as well as alkylation and acyl-transfer reactions and N-glycosidic and peptide bond formation. The existence of such RNA enzymes supports the notion that ribozymes could have directed a primitive metabolism before the evolution of protein synthesis. New in vitro protein selection techniques should allow for a direct comparison of the frequency of ligand binding and catalytic structures in pools of random sequence polynucleotides versus polypeptides.

Journal ArticleDOI
TL;DR: In the absence of both CKIs, the severe reduction in cyclin D‐dependent kinase activity was well tolerated and had no overt effects on the cell cycle.
Abstract: The widely prevailing view that the cyclin-dependent kinase inhibitors (CKIs) are solely negative regulators of cyclin-dependent kinases (CDKs) is challenged here by observations that normal up-regulation of cyclin D- CDK4 in mitogen-stimulated fibroblasts depends redundantly upon p21(Cip1) and p27(Kip1). Primary mouse embryonic fibroblasts that lack genes encoding both p21 and p27 fail to assemble detectable amounts of cyclin D-CDK complexes, express cyclin D proteins at much reduced levels, and are unable to efficiently direct cyclin D proteins to the cell nucleus. Restoration of CKI function reverses all three defects and thereby restores cyclin D activity to normal physiological levels. In the absence of both CKIs, the severe reduction in cyclin D-dependent kinase activity was well tolerated and had no overt effects on the cell cycle.

Journal ArticleDOI
05 Mar 1999-Cell
TL;DR: A novel family of seven transmembrane domain proteins, encoded by 100 to 200 genes, that is likely to represent the family of Drosophila odorant receptors are identified and may ultimately afford a system to understand the mechanistic link between odor recognition and behavior.

Journal ArticleDOI
29 Oct 1999-Cell
TL;DR: Findings suggest that NSAIDs inhibit tumorigenesis through inhibition of PPARdelta, the gene for which is normally regulated by APC.

Journal ArticleDOI
02 Jul 1999-Science
TL;DR: Insight is provided into Mg2+ homeostasis, the role of a tight junction protein in human disease is demonstrated, and an essential component of a selective paracellular conductance is identified.
Abstract: Epithelia permit selective and regulated flux from apical to basolateral surfaces by transcellular passage through cells or paracellular flux between cells. Tight junctions constitute the barrier to paracellular conductance; however, little is known about the specific molecules that mediate paracellular permeabilities. Renal magnesium ion (Mg2+) resorption occurs predominantly through a paracellular conductance in the thick ascending limb of Henle (TAL). Here, positional cloning has identified a human gene, paracellin-1 ( PCLN-1 ), mutations in which cause renal Mg2+ wasting. PCLN-1 is located in tight junctions of the TAL and is related to the claudin family of tight junction proteins. These findings provide insight into Mg2+homeostasis, demonstrate the role of a tight junction protein in human disease, and identify an essential component of a selective paracellular conductance.

Journal ArticleDOI
11 Jun 1999-Science
TL;DR: Math1, a mouse homolog of the Drosophila proneural gene atonal, is expressed in inner ear sensory epithelia, and this gene is thus required for the genesis of hair cells.
Abstract: The mammalian inner ear contains the cochlea and vestibular organs, which are responsible for hearing and balance, respectively. The epithelia of these sensory organs contain hair cells that function as mechanoreceptors to transduce sound and head motion. The molecular mechanisms underlying hair cell development and differentiation are poorly understood. Math1, a mouse homolog of theDrosophila proneural gene atonal, is expressed in inner ear sensory epithelia. Embryonic Math1-null mice failed to generate cochlear and vestibular hair cells. This gene is thus required for the genesis of hair cells.

Journal ArticleDOI
TL;DR: It was found that p53 had profound effects on drug responses, and these effects varied dramatically depending on the drug, having significant implications for future efforts to maximize therapeutic efficacy in patients with defined genetic alterations.
Abstract: We have examined the effects of commonly used chemotherapeutic agents on human colon cancer cell lines in which the p53 pathway has been specifically disrupted by targeted homologous recombination. We found that p53 had profound effects on drug responses, and these effects varied dramatically depending on the drug. The p53-deficient cells were sensitized to the effects of DNA-damaging agents as a result of the failure to induce expression of the cyclin-dependent kinase inhibitor p21. In contrast, p53 disruption rendered cells strikingly resistant to the effects of the antimetabolite 5-fluorouracil (5-FU), the mainstay of adjuvant therapy for colorectal cancer. The effects on 5-FU sensitivity were observed both in vitro and in vivo, were independent of p21, and appeared to be the result of perturbations in RNA, rather than DNA, metabolism. These results have significant implications for future efforts to maximize therapeutic efficacy in patients with defined genetic alterations.

Journal ArticleDOI
20 Aug 1999-Cell
TL;DR: The generation of mice expressing only 5% of normal levels of the essential NMDAR1 (NR1) subunit is reported, supporting a model in which reduced NMDA receptor activity results in schizophrenic-like behavior and reveals how pharmacological manipulation of monoaminergic pathways can affect this phenotype.

Journal ArticleDOI
TL;DR: The findings support a model for FPD/AML in which haploinsufficiency of CBFA2 causes an autosomal dominant congenital platelet defect and predisposes to the acquisition of additional mutations that cause leukaemia.
Abstract: Familial platelet disorder with predisposition to acute myelogenous leukaemia (FPD/AML, MIM 601399) is an autosomal dominant disorder characterized by qualitative and quantitative platelet defects, and propensity to develop acute myelogenous leukaemia (AML). Informative recombination events in 6 FPD/AML pedigrees with evidence of linkage to markers on chromosome 21q identified an 880-kb interval containing the disease gene. Mutational analysis of regional candidate genes showed nonsense mutations or intragenic deletion of one allele of the haematopoietic transcription factor CBFA2 (formerly AML1) that co-segregated with the disease in four FPD/AML pedigrees. We identified heterozygous CBFA2 missense mutations that co-segregated with the disease in the remaining two FPD/AML pedigrees at phylogenetically conserved amino acids R166 and R201, respectively. Analysis of bone marrow or peripheral blood cells from affected FPD/AML individuals showed a decrement in megakaryocyte colony formation, demonstrating that CBFA2 dosage affects megakaryopoiesis. Our findings support a model for FPD/AML in which haploinsufficiency of CBFA2 causes an autosomal dominant congenital platelet defect and predisposes to the acquisition of additional mutations that cause leukaemia.

Journal ArticleDOI
05 Nov 1999-Science
TL;DR: In this article, it was shown that the checkpoint protein kinase ATM (mutated in ataxia telangiectasia) was required for phosphorylation of Brca1 in response to ionizing radiation.
Abstract: The Brca1 (breast cancer gene 1) tumor suppressor protein is phosphorylated in response to DNA damage. Results from this study indicate that the checkpoint protein kinase ATM (mutated in ataxia telangiectasia) was required for phosphorylation of Brca1 in response to ionizing radiation. ATM resides in a complex with Brca1 and phosphorylated Brca1 in vivo and in vitro in a region that contains clusters of serine-glutamine residues. Phosphorylation of this domain appears to be functionally important because a mutated Brca1 protein lacking two phosphorylation sites failed to rescue the radiation hypersensitivity of a Brca1-deficient cell line. Thus, phosphorylation of Brca1 by the checkpoint kinase ATM may be critical for proper responses to DNA double-strand breaks and may provide a molecular explanation for the role of ATM in breast cancer.

Journal ArticleDOI
TL;DR: It is demonstrated that LEF1/TCF3 is necessary but not sufficient for TOPGAL activation, revealing the existence of positive and negative regulators of these factors in the skin and unveiling the importance of activated LEF/ TCF complexes at distinct times in hair development and cycling when changes in cell fate and differentiation commitments take place.
Abstract: LEF/TCF DNA-binding proteins act in concert with activated beta -catenin, the product of Wnt signaling, to transactivate downstream target genes. To probe the role of activated LEF/TCF transcription factor complexes in hair follicle morphogenesis and differentiation, we engineered mice harboring TOPGAL, a beta -galactosidase gene under the control of a LEF/TCF and beta -catenin inducible promoter. In mice, TOPGAL expression was directly stimulated by a stabilized form of beta -catenin, but was also dependent upon LEF1/TCF3 in skin. During embryogenesis, TOPGAL activation occurred transiently in a subset of LEF1-positive cells of pluripotent ectoderm and underlying mesenchyme. Downgrowth of initiated follicles proceeded in the absence of detectable TOPGAL expression, even though LEF1 was still expressed. While proliferative matrix cells expressed the highest levels of Lef1 mRNAs, LEF1 concentrated in the precursor cells to the hair shaft, where TOPGAL expression was co-induced with hair-specific keratin genes containing LEF/TCF-binding motifs. LEF1 and TOPGAL expression ceased during catagen and telogen, but reappeared at the start of the postnatal hair cycle, concomitant with precortex formation. In contrast to hair shaft precursor cells, postnatal outer root sheath expressed TCF3, but not TOPGAL. TCF3 was also expressed in the putative follicle stem cells, and while TOPGAL was generally silent in this compartment, it was stimulated at the start of the hair cycle in a fashion that appeared to be dependent upon stabilization of beta -catenin. Taken together, our findings demonstrate that LEF1/TCF3 is necessary but not sufficient for TOPGAL activation, revealing the existence of positive and negative regulators of these factors in the skin. Furthermore, our findings unveil the importance of activated LEF/TCF complexes at distinct times in hair development and cycling when changes in cell fate and differentiation commitments take place.

Journal ArticleDOI
TL;DR: An important role is demonstrated in the development of breast cancer metastasis to bone, via the TGF-beta receptor-mediated signaling pathway in tumor cells, and it is suggested that the bone destruction is mediated by PTHrP.
Abstract: Breast cancer frequently metastasizes to the skeleton, and the associated bone destruction is mediated by the osteoclast. Growth factors, including transforming growth factor-β (TGF-β), released from bone matrix by the action of osteoclasts, may foster metastatic growth. Because TGF-β inhibits growth of epithelial cells, and carcinoma cells are often defective in TGF-β responses, any role of TGF-β in metastasis is likely to be mediated by effects on the surrounding normal tissue. However, we present evidence that TGF-β promotes breast cancer metastasis by acting directly on the tumor cells. Expression of a dominant–negative mutant (TβRIIΔcyt) of the TGF-β type II receptor rendered the human breast cancer cell line MDA-MB-231 unresponsive to TGF-β. In a murine model of bone metastases, expression of TβRIIΔcyt by MDA-MB-231 resulted in less bone destruction, less tumor with fewer associated osteoclasts, and prolonged survival compared with controls. Reversal of the dominant–negative signaling blockade by expression of a constitutively active TGF-β type I receptor in the breast cancer cells increased tumor production of parathyroid hormone–related protein (PTHrP), enhanced osteolytic bone metastasis, and decreased survival. Transfection of MDA-MB-231 cells that expressed the dominant–negative TβRIIΔcyt with the cDNA for PTHrP resulted in constitutive tumor PTHrP production and accelerated bone metastases. These data demonstrate an important role for TGF-β in the development of breast cancer metastasis to bone, via the TGF-β receptor–mediated signaling pathway in tumor cells, and suggest that the bone destruction is mediated by PTHrP.

Journal ArticleDOI
23 Dec 1999-Cell
TL;DR: The assignment of LNv neurons as the principal circadian pacemakers controlling daily locomotion in Drosophila is confirmed and PDF is implicate as the Principal circadian transmitter.

Journal ArticleDOI
24 Dec 1999-Science
TL;DR: It is suggested that inhibition of beta-arrestin 2 function might lead to enhanced analgesic effectiveness of morphine and provide potential new avenues for the study and treatment of pain, narcotic tolerance, and dependence.
Abstract: The ability of morphine to alleviate pain is mediated through a heterotrimeric guanine nucleotide binding protein (G protein)-coupled heptahelical receptor (GPCR), the mu opioid receptor (muOR). The efficiency of GPCR signaling is tightly regulated and ultimately limited by the coordinated phosphorylation of the receptors by specific GPCR kinases and the subsequent interaction of the phosphorylated receptors with beta-arrestin 1 and beta-arrestin 2. Functional deletion of the beta-arrestin 2 gene in mice resulted in remarkable potentiation and prolongation of the analgesic effect of morphine, suggesting that muOR desensitization was impaired. These results provide evidence in vivo for the physiological importance of beta-arrestin 2 in regulating the function of a specific GPCR, the muOR. Moreover, they suggest that inhibition of beta-arrestin 2 function might lead to enhanced analgesic effectiveness of morphine and provide potential new avenues for the study and treatment of pain, narcotic tolerance, and dependence.

Journal ArticleDOI
TL;DR: It is shown that Arf binds to the product of the Mdm2 gene and sequesters it into the nucleolus, thereby preventing negative-feedback regulation of p53 by MDM2 and leading to the activation of p 53 in the nucleoplasm.
Abstract: The Ink4/Arf locus encodes two tumour-suppressor proteins, p16Ink4a and p19Arf, that govern the antiproliferative functions of the retinoblastoma and p53 proteins, respectively. Here we show that Arf binds to the product of the Mdm2 gene and sequesters it into the nucleolus, thereby preventing negative-feedback regulation of p53 by Mdm2 and leading to the activation of p53 in the nucleoplasm. Arf and Mdm2 co-localize in the nucleolus in response to activation of the oncoprotein Myc and as mouse fibroblasts undergo replicative senescence. These topological interactions of Arf and Mdm2 point towards a new mechanism for p53 activation.