scispace - formally typeset
Search or ask a question

Showing papers by "Howard Hughes Medical Institute published in 2018"


Journal ArticleDOI
TL;DR: It is found that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art.
Abstract: Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems-patient classification, fundamental biological processes and treatment of patients-and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network's prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine.

1,491 citations


Journal ArticleDOI
TL;DR: This work reports the insulin-like growth factor 2 mRNA-binding proteins as a distinct family of m6A readers that target thousands of mRNA transcripts through recognizing the consensus GG(m6A)C sequence, and identifies IGF2BPs as an additional class of N6-methyladenosine (m 6A) reader proteins.
Abstract: N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic messenger RNAs (mRNAs) and is interpreted by its readers, such as YTH domain-containing proteins, to regulate mRNA fate. Here, we report the insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs; including IGF2BP1/2/3) as a distinct family of m6A readers that target thousands of mRNA transcripts through recognizing the consensus GG(m6A)C sequence. In contrast to the mRNA-decay-promoting function of YTH domain-containing family protein 2, IGF2BPs promote the stability and storage of their target mRNAs (for example, MYC) in an m6A-dependent manner under normal and stress conditions and therefore affect gene expression output. Moreover, the K homology domains of IGF2BPs are required for their recognition of m6A and are critical for their oncogenic functions. Thus, our work reveals a different facet of the m6A-reading process that promotes mRNA stability and translation, and highlights the functional importance of IGF2BPs as m6A readers in post-transcriptional gene regulation and cancer biology.

1,373 citations


Journal ArticleDOI
TL;DR: To help users explore the biological context of their results, and to discover new data resources, search results are now supplemented with cross references to other EMBL-EBI databases.
Abstract: The HMMER webserver [http://www.ebi.ac.uk/Tools/hmmer] is a free-to-use service which provides fast searches against widely used sequence databases and profile hidden Markov model (HMM) libraries using the HMMER software suite (http://hmmer.org). The results of a sequence search may be summarized in a number of ways, allowing users to view and filter the significant hits by domain architecture or taxonomy. For large scale usage, we provide an application programmatic interface (API) which has been expanded in scope, such that all result presentations are available via both HTML and API. Furthermore, we have refactored our JavaScript visualization library to provide standalone components for different result representations. These consume the aforementioned API and can be integrated into third-party websites. The range of databases that can be searched against has been expanded, adding four sequence datasets (12 in total) and one profile HMM library (6 in total). To help users explore the biological context of their results, and to discover new data resources, search results are now supplemented with cross references to other EMBL-EBI databases.

1,191 citations


Journal ArticleDOI
31 Oct 2018-Nature
TL;DR: This study establishes a combined transcriptomic and projectional taxonomy of cortical cell types from functionally distinct areas of the adult mouse cortex and identifies 133 transcriptomic types of glutamatergic neurons to their long-range projection specificity.
Abstract: The neocortex contains a multitude of cell types that are segregated into layers and functionally distinct areas. To investigate the diversity of cell types across the mouse neocortex, here we analysed 23,822 cells from two areas at distant poles of the mouse neocortex: the primary visual cortex and the anterior lateral motor cortex. We define 133 transcriptomic cell types by deep, single-cell RNA sequencing. Nearly all types of GABA (γ-aminobutyric acid)-containing neurons are shared across both areas, whereas most types of glutamatergic neurons were found in one of the two areas. By combining single-cell RNA sequencing and retrograde labelling, we match transcriptomic types of glutamatergic neurons to their long-range projection specificity. Our study establishes a combined transcriptomic and projectional taxonomy of cortical cell types from functionally distinct areas of the adult mouse cortex.

1,184 citations


Journal ArticleDOI
05 Apr 2018-Nature
TL;DR: In this article, the authors used phage-assisted continuous evolution to evolve an expanded PAM SpCas9 variant (xCas9) that can recognize a broad range of PAM sequences including NG, GAA and GAT.
Abstract: A key limitation of the use of the CRISPR-Cas9 system for genome editing and other applications is the requirement that a protospacer adjacent motif (PAM) be present at the target site. For the most commonly used Cas9 from Streptococcus pyogenes (SpCas9), the required PAM sequence is NGG. No natural or engineered Cas9 variants that have been shown to function efficiently in mammalian cells offer a PAM less restrictive than NGG. Here we use phage-assisted continuous evolution to evolve an expanded PAM SpCas9 variant (xCas9) that can recognize a broad range of PAM sequences including NG, GAA and GAT. The PAM compatibility of xCas9 is the broadest reported, to our knowledge, among Cas9 proteins that are active in mammalian cells, and supports applications in human cells including targeted transcriptional activation, nuclease-mediated gene disruption, and cytidine and adenine base editing. Notably, despite its broadened PAM compatibility, xCas9 has much greater DNA specificity than SpCas9, with substantially lower genome-wide off-target activity at all NGG target sites tested, as well as minimal off-target activity when targeting genomic sites with non-NGG PAMs. These findings expand the DNA targeting scope of CRISPR systems and establish that there is no necessary trade-off between Cas9 editing efficiency, PAM compatibility and DNA specificity.

1,142 citations


Journal ArticleDOI
TL;DR: A comprehensive account of the state of the art of base editing of DNA and RNA is provided, including the progressive improvements to methodologies, understanding and avoiding unintended edits, cellular and organismal delivery of editing reagents and diverse applications in research and therapeutic settings.
Abstract: RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks. DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing by-products. In this Review, we summarize base-editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision and in vivo delivery of base editors and discuss limitations and future directions of base editing for research and therapeutic applications.

989 citations


Journal ArticleDOI
TL;DR: Yeast display-based directed evolution is used to engineer two promiscuous mutants of biotin ligase, TurboID and miniTurbo, which catalyze PL with much greater efficiency than BioID or BioID2, and enable 10-min PL in cells with non-toxic and easily deliverable biotin.
Abstract: Protein interaction networks and protein compartmentalization underlie all signaling and regulatory processes in cells. Enzyme-catalyzed proximity labeling (PL) has emerged as a new approach to study the spatial and interaction characteristics of proteins in living cells. However, current PL methods require over 18 h of labeling time or utilize chemicals with limited cell permeability or high toxicity. We used yeast display-based directed evolution to engineer two promiscuous mutants of biotin ligase, TurboID and miniTurbo, which catalyze PL with much greater efficiency than BioID or BioID2, and enable 10-min PL in cells with non-toxic and easily deliverable biotin. Furthermore, TurboID extends biotin-based PL to flies and worms.

896 citations


Posted ContentDOI
Evan Bolyen1, Jai Ram Rideout1, Matthew R. Dillon1, Nicholas A. Bokulich1, Christian C. Abnet, Gabriel A. Al-Ghalith2, Harriet Alexander3, Harriet Alexander4, Eric J. Alm5, Manimozhiyan Arumugam6, Francesco Asnicar7, Yang Bai8, Jordan E. Bisanz9, Kyle Bittinger10, Asker Daniel Brejnrod6, Colin J. Brislawn11, C. Titus Brown3, Benjamin J. Callahan12, Andrés Mauricio Caraballo-Rodríguez13, John Chase1, Emily K. Cope1, Ricardo Silva13, Pieter C. Dorrestein13, Gavin M. Douglas14, Daniel M. Durall15, Claire Duvallet5, Christian F. Edwardson16, Madeleine Ernst13, Mehrbod Estaki15, Jennifer Fouquier17, Julia M. Gauglitz13, Deanna L. Gibson15, Antonio Gonzalez18, Kestrel Gorlick1, Jiarong Guo19, Benjamin Hillmann2, Susan Holmes20, Hannes Holste18, Curtis Huttenhower21, Curtis Huttenhower22, Gavin A. Huttley23, Stefan Janssen24, Alan K. Jarmusch13, Lingjing Jiang18, Benjamin D. Kaehler23, Kyo Bin Kang13, Kyo Bin Kang25, Christopher R. Keefe1, Paul Keim1, Scott T. Kelley26, Dan Knights2, Irina Koester18, Irina Koester13, Tomasz Kosciolek18, Jorden Kreps1, Morgan G. I. Langille14, Joslynn S. Lee27, Ruth E. Ley28, Ruth E. Ley29, Yong-Xin Liu8, Erikka Loftfield, Catherine A. Lozupone17, Massoud Maher18, Clarisse Marotz18, Bryan D Martin30, Daniel McDonald18, Lauren J. McIver21, Lauren J. McIver22, Alexey V. Melnik13, Jessica L. Metcalf31, Sydney C. Morgan15, Jamie Morton18, Ahmad Turan Naimey1, Jose A. Navas-Molina32, Jose A. Navas-Molina18, Louis-Félix Nothias13, Stephanie B. Orchanian18, Talima Pearson1, Samuel L. Peoples33, Samuel L. Peoples30, Daniel Petras13, Mary L. Preuss34, Elmar Pruesse17, Lasse Buur Rasmussen6, Adam R. Rivers35, Ii Michael S Robeson36, Patrick Rosenthal34, Nicola Segata7, Michael Shaffer17, Arron Shiffer1, Rashmi Sinha, Se Jin Song18, John R. Spear37, Austin D. Swafford18, Luke R. Thompson38, Luke R. Thompson39, Pedro J. Torres26, Pauline Trinh30, Anupriya Tripathi13, Anupriya Tripathi18, Peter J. Turnbaugh9, Sabah Ul-Hasan40, Justin J. J. van der Hooft41, Fernando Vargas18, Yoshiki Vázquez-Baeza18, Emily Vogtmann, Max von Hippel42, William A. Walters29, Yunhu Wan, Mingxun Wang13, Jonathan Warren43, Kyle C. Weber35, Kyle C. Weber44, Chase Hd Williamson1, Amy D. Willis30, Zhenjiang Zech Xu18, Jesse R. Zaneveld30, Yilong Zhang45, Rob Knight18, J. Gregory Caporaso1 
24 Oct 2018-PeerJ
TL;DR: QIIME 2 provides new features that will drive the next generation of microbiome research, including interactive spatial and temporal analysis and visualization tools, support for metabolomics and shotgun metagenomics analysis, and automated data provenance tracking to ensure reproducible, transparent microbiome data science.
Abstract: We present QIIME 2, an open-source microbiome data science platform accessible to users spanning the microbiome research ecosystem, from scientists and engineers to clinicians and policy makers. QIIME 2 provides new features that will drive the next generation of microbiome research. These include interactive spatial and temporal analysis and visualization tools, support for metabolomics and shotgun metagenomics analysis, and automated data provenance tracking to ensure reproducible, transparent microbiome data science.

875 citations


Journal ArticleDOI
TL;DR: The current understanding of the m6A modification, particularly the functions of its writers, erasers, readers in RNA metabolism, is described, with an emphasis on its role in regulating the isoform dosage of mRNAs.
Abstract: N6-methyladenosine (m6A) is a chemical modification present in multiple RNA species, being most abundant in mRNAs. Studies on enzymes or factors that catalyze, recognize, and remove m6A have revealed its comprehensive roles in almost every aspect of mRNA metabolism, as well as in a variety of physiological processes. This review describes the current understanding of the m6A modification, particularly the functions of its writers, erasers, readers in RNA metabolism, with an emphasis on its role in regulating the isoform dosage of mRNAs.

829 citations


Journal ArticleDOI
16 Feb 2018-Science
TL;DR: Clinical benefit was associated with loss-of-function mutations in the PBRM1 gene, which encodes a subunit of the PBAF switch-sucrose nonfermentable (SWI/SNF) chromatin remodeling complex, and may alter global tumor-cell expression profiles to influence responsiveness to immune checkpoint therapy.
Abstract: Immune checkpoint inhibitors targeting the programmed cell death 1 receptor (PD-1) improve survival in a subset of patients with clear cell renal cell carcinoma (ccRCC). To identify genomic alterations in ccRCC that correlate with response to anti–PD-1 monotherapy, we performed whole-exome sequencing of metastatic ccRCC from 35 patients. We found that clinical benefit was associated with loss-of-function mutations in the PBRM1 gene ( P = 0.012), which encodes a subunit of the PBAF switch-sucrose nonfermentable (SWI/SNF) chromatin remodeling complex. We confirmed this finding in an independent validation cohort of 63 ccRCC patients treated with PD-1 or PD-L1 (PD-1 ligand) blockade therapy alone or in combination with anti–CTLA-4 (cytotoxic T lymphocyte-associated protein 4) therapies ( P = 0.0071). Gene-expression analysis of PBAF-deficient ccRCC cell lines and PBRM1 -deficient tumors revealed altered transcriptional output in JAK-STAT (Janus kinase–signal transducers and activators of transcription), hypoxia, and immune signaling pathways. PBRM1 loss in ccRCC may alter global tumor-cell expression profiles to influence responsiveness to immune checkpoint therapy.

821 citations


Journal ArticleDOI
27 Jul 2018-Science
TL;DR: An efficient sequencing approach with hydrogel-tissue chemistry was combined to develop a multidisciplinary technology for three-dimensional (3D) intact-tissues RNA sequencing and widespread up-regulation of activity-regulated genes was observed in response to visual stimulation.
Abstract: Retrieving high-content gene-expression information while retaining three-dimensional (3D) positional anatomy at cellular resolution has been difficult, limiting integrative understanding of structure and function in complex biological tissues. We developed and applied a technology for 3D intact-tissue RNA sequencing, termed STARmap (spatially-resolved transcript amplicon readout mapping), which integrates hydrogel-tissue chemistry, targeted signal amplification, and in situ sequencing. The capabilities of STARmap were tested by mapping 160 to 1020 genes simultaneously in sections of mouse brain at single-cell resolution with high efficiency, accuracy, and reproducibility. Moving to thick tissue blocks, we observed a molecularly defined gradient distribution of excitatory-neuron subtypes across cubic millimeter–scale volumes (>30,000 cells) and a short-range 3D self-clustering in many inhibitory-neuron subtypes that could be identified and described with 3D STARmap.

Journal ArticleDOI
TL;DR: This paper introduces Rfam release 13.0, which switches to a new genome-centric approach that annotates a non-redundant set of reference genomes with RNA families, and describes new web interface features including faceted text search and R-scape secondary structure visualizations.
Abstract: The Rfam database is a collection of RNA families in which each family is represented by a multiple sequence alignment, a consensus secondary structure, and a covariance model. In this paper we introduce Rfam release 13.0, which switches to a new genome-centric approach that annotates a non-redundant set of reference genomes with RNA families. We describe new web interface features including faceted text search and R-scape secondary structure visualizations. We discuss a new literature curation workflow and a pipeline for building families based on RNAcentral. There are 236 new families in release 13.0, bringing the total number of families to 2687. The Rfam website is http://rfam.org.

Journal ArticleDOI
Jeffrey W. Tyner1, Cristina E. Tognon1, Cristina E. Tognon2, Daniel Bottomly1, Beth Wilmot1, Stephen E. Kurtz1, Samantha L. Savage1, Nicola Long1, Anna Reister Schultz1, Elie Traer1, Melissa L. Abel1, Anupriya Agarwal1, Aurora Blucher1, Uma Borate1, Jade Bryant1, Russell T. Burke1, Amy S. Carlos1, Richie Carpenter1, Joseph Carroll1, Bill H. Chang1, Cody Coblentz1, Amanda d’Almeida1, Rachel J. Cook1, Alexey V. Danilov1, Kim Hien T. Dao1, Michie Degnin1, Deirdre Devine1, James Dibb1, David K. Edwards1, Christopher A. Eide2, Christopher A. Eide1, Isabel English1, Jason M. Glover1, Rachel Henson1, Hibery Ho1, Abdusebur Jemal1, Kara Johnson1, Ryan C. Johnson1, Brian Junio1, Andy Kaempf1, Jessica Leonard1, Chenwei Lin1, Selina Qiuying Liu1, Pierrette Lo1, Marc M. Loriaux1, Samuel B. Luty1, Tara A. Macey1, Jason D. MacManiman1, Jacqueline Martinez1, Motomi Mori1, Dylan Nelson3, Ceilidh Nichols1, Jill Peters1, Justin Ramsdill1, Angela Rofelty1, Robert Schuff1, Robert P. Searles1, Erik Segerdell1, Rebecca Smith1, Stephen E. Spurgeon1, Tyler Sweeney1, Aashis Thapa1, Corinne Visser1, Jake Wagner1, Kevin Watanabe-Smith1, Kristen Werth1, Joelle Wolf1, Libbey White1, Amy Yates1, Haijiao Zhang1, Christopher R. Cogle4, Robert H. Collins5, Denise C. Connolly6, Michael W. Deininger7, Leylah Drusbosky4, Christopher S. Hourigan8, Craig T. Jordan9, Patricia Kropf6, Tara L. Lin10, Micaela E. Martinez11, Bruno C. Medeiros12, Rachel R. Pallapati11, Daniel A. Pollyea9, Ronan T. Swords11, Justin M. Watts11, Scott Weir10, David L. Wiest6, Ryan M. Winters6, Shannon K. McWeeney1, Brian J. Druker2, Brian J. Druker1 
17 Oct 2018-Nature
TL;DR: Analyses of samples from patients with acute myeloid leukaemia reveal that drug response is associated with mutational status and gene expression; the generated dataset provides a basis for future clinical and functional studies of this disease.
Abstract: The implementation of targeted therapies for acute myeloid leukaemia (AML) has been challenging because of the complex mutational patterns within and across patients as well as a dearth of pharmacologic agents for most mutational events. Here we report initial findings from the Beat AML programme on a cohort of 672 tumour specimens collected from 562 patients. We assessed these specimens using whole-exome sequencing, RNA sequencing and analyses of ex vivo drug sensitivity. Our data reveal mutational events that have not previously been detected in AML. We show that the response to drugs is associated with mutational status, including instances of drug sensitivity that are specific to combinatorial mutational events. Integration with RNA sequencing also revealed gene expression signatures, which predict a role for specific gene networks in the drug response. Collectively, we have generated a dataset—accessible through the Beat AML data viewer (Vizome)—that can be leveraged to address clinical, genomic, transcriptomic and functional analyses of the biology of AML. Analyses of samples from patients with acute myeloid leukaemia reveal that drug response is associated with mutational status and gene expression; the generated dataset provides a basis for future clinical and functional studies of this disease.

Journal ArticleDOI
13 Dec 2018-Cell
TL;DR: Air-liquid interface method propagated patient-derived organoids (PDOs) from >100 human biopsies or mouse tumors in syngeneic immunocompetent hosts as tumor epithelia with native embedded immune cells to enable immuno-oncology investigations within the TME and facilitate personalized immunotherapy testing.

Journal ArticleDOI
07 Mar 2018-eLife
TL;DR: New open-source software called cisTEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging is developed, optimized to enable processing of typical datasets on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing.
Abstract: We have developed new open-source software called cisTEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cisTEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200 k - 300 k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cisTEM is available for download from cistem.org.

Journal ArticleDOI
TL;DR: This review summarizes recent findings on how genomic instability leads to cGAS activation and how this pathway critically connects DNA damage to autoinflammatory diseases, cellular senescence, and cancer.
Abstract: Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how to distinguish foreign DNA from abundant self-DNA. Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) is a DNA sensor that triggers innate immune responses through production of the second messenger cyclic GMP-AMP (cGAMP), which binds and activates the adaptor protein STING. However, cGAS can be activated by double-stranded DNA irrespective of the sequence, including self-DNA. Although how cGAS is normally kept inactive in cells is still not well understood, recent research has provided strong evidence that genomic DNA damage leads to cGAS activation to stimulate inflammatory responses. This review summarizes recent findings on how genomic instability and DNA damage trigger cGAS activation and how cGAS serves as a link from DNA damage to inflammation, cellular senescence, and cancer.

Journal ArticleDOI
27 Jul 2018-Science
TL;DR: Live-cell single-molecule imaging revealed that TF LCDs interact to form local high-concentration hubs at both synthetic DNA arrays and endogenous genomic loci, suggesting that under physiological conditions, rapid, reversible, and selective multivalent LCD-LCD interactions occur between TFs and the RNA Pol II machinery to activate transcription.
Abstract: Many eukaryotic transcription factors (TFs) contain intrinsically disordered low-complexity sequence domains (LCDs), but how these LCDs drive transactivation remains unclear. We used live-cell single-molecule imaging to reveal that TF LCDs form local high-concentration interaction hubs at synthetic and endogenous genomic loci. TF LCD hubs stabilize DNA binding, recruit RNA polymerase II (RNA Pol II), and activate transcription. LCD-LCD interactions within hubs are highly dynamic, display selectivity with binding partners, and are differentially sensitive to disruption by hexanediols. Under physiological conditions, rapid and reversible LCD-LCD interactions occur between TFs and the RNA Pol II machinery without detectable phase separation. Our findings reveal fundamental mechanisms underpinning transcriptional control and suggest a framework for developing single-molecule imaging screens for drugs targeting gene regulatory interactions implicated in disease.

Journal Article
TL;DR: In this article, the authors highlight recent advances in understanding of the core molecular clock and how it utilizes diverse transcriptional and post-transcriptional mechanisms to impart temporal control onto mammalian physiology.
Abstract: Circadian clocks coordinate physiology and behavior with the 24h solar day to provide temporal homeostasis with the external environment. The molecular clocks that drive these intrinsic rhythmic changes are based on interlocked transcription/translation feedback loops that integrate with diverse environmental and metabolic stimuli to generate internal 24h timing. In this review we highlight recent advances in our understanding of the core molecular clock and how it utilizes diverse transcriptional and post-transcriptional mechanisms to impart temporal control onto mammalian physiology. Understanding the way in which biological rhythms are generated throughout the body may provide avenues for temporally directed therapeutics to improve health and prevent disease.

Journal ArticleDOI
16 Nov 2018-Science
TL;DR: A core neuronal population activated in all animals that exhibit parenting, as well as cell populations differentially activated in mothers and fathers, are identified, providing insights into how physiological state may affect parental behavior.
Abstract: The hypothalamus controls essential social behaviors and homeostatic functions. However, the cellular architecture of hypothalamic nuclei, including the molecular identity, spatial organization, and function of distinct cell types, is poorly understood. Here, we developed an imaging-based in situ cell type identification and mapping method and combined it with single-cell RNA-sequencing to create a molecularly annotated and spatially resolved cell atlas of the mouse hypothalamic preoptic region. We profiled ~1 million cells, identified ~70 neuronal populations characterized by distinct neuromodulatory signatures and spatial organizations, and defined specific neuronal populations activated during social behaviors in male and female mice, providing a high-resolution framework for mechanistic investigation of behavior circuits. The approach described opens a new avenue for the construction of cell atlases in diverse tissues and organisms.

Journal ArticleDOI
11 Jan 2018-Cell
TL;DR: While R-2HG accumulated in IDH1/2 mutant cancers contributes to cancer initiation, this work demonstrates anti-tumor effects of 2HG in inhibiting proliferation/survival of FTO-high cancer cells via targeting FTO/m6A/MYC/CEBPA signaling.

Journal ArticleDOI
26 Oct 2018-Science
TL;DR: A super-resolution chromatin tracing method that allows determination of both the structural features and their genomic coordinates with high resolution in single cells is reported, suggesting that cohesin is not required for the formation or maintenance of single-cell domain structures, but that their preferential boundary positions are influenced by cohes in-CTCF interaction.
Abstract: The spatial organization of chromatin is pivotal for regulating genome functions. We report an imaging method for tracing chromatin organization with kilobase- and nanometer-scale resolution, unveiling chromatin conformation across topologically associating domains (TADs) in thousands of individual cells. Our imaging data revealed TAD-like structures with globular conformation and sharp domain boundaries in single cells. The boundaries varied from cell to cell, occurring with nonzero probabilities at all genomic positions but preferentially at CCCTC-binding factor (CTCF)- and cohesin-binding sites. Notably, cohesin depletion, which abolished TADs at the population-average level, did not diminish TAD-like structures in single cells but eliminated preferential domain boundary positions. Moreover, we observed widespread, cooperative, multiway chromatin interactions, which remained after cohesin depletion. These results provide critical insight into the mechanisms underlying chromatin domain and hub formation.

Journal ArticleDOI
26 Jul 2018-Cell
TL;DR: Recon reconstructions of the entire brain of an adult female fly show that this freely available EM volume supports mapping of brain-spanning circuits, which will significantly accelerate Drosophila neuroscience.

Journal ArticleDOI
28 Sep 2018-Science
TL;DR: Here, N6-methyladenosine affects the translation and stability of the modified transcripts, thus providing a mechanism to coordinate the regulation of groups of transcripts during cell state maintenance and transition and thereby facilitate proper development.
Abstract: RNA modifications have recently emerged as critical posttranscriptional regulators of gene expression programs. They affect diverse eukaryotic biological processes, and the correct deposition of many of these modifications is required for normal development. Messenger RNA (mRNA) modifications regulate various aspects of mRNA metabolism. For example, N6-methyladenosine (m6A) affects the translation and stability of the modified transcripts, thus providing a mechanism to coordinate the regulation of groups of transcripts during cell state maintenance and transition. Similarly, some modifications in transfer RNAs are essential for RNA structure and function. Others are deposited in response to external cues and adapt global protein synthesis and gene-specific translational accordingly and thereby facilitate proper development.

Journal ArticleDOI
TL;DR: It is demonstrated that phosphorylated or mutant aggregation prone recombinant tau undergoes LLPS, as does high molecular weight soluble phospho‐tau isolated from human Alzheimer brain, and it is suggested that LLPS represents a biophysical process with a role in multiple different neurodegenerative diseases.
Abstract: The transition between soluble intrinsically disordered tau protein and aggregated tau in neurofibrillary tangles in Alzheimer's disease is unknown. Here, we propose that soluble tau species can undergo liquid–liquid phase separation (LLPS) under cellular conditions and that phase‐separated tau droplets can serve as an intermediate toward tau aggregate formation. We demonstrate that phosphorylated or mutant aggregation prone recombinant tau undergoes LLPS, as does high molecular weight soluble phospho‐tau isolated from human Alzheimer brain. Droplet‐like tau can also be observed in neurons and other cells. We found that tau droplets become gel‐like in minutes, and over days start to spontaneously form thioflavin‐S‐positive tau aggregates that are competent of seeding cellular tau aggregation. Since analogous LLPS observations have been made for FUS, hnRNPA1, and TDP43, which aggregate in the context of amyotrophic lateral sclerosis, we suggest that LLPS represents a biophysical process with a role in multiple different neurodegenerative diseases.

Journal ArticleDOI
TL;DR: It is shown that expression levels are a bottleneck in base-editing efficiency, and cytidine and adenine base editors are optimized by modification of nuclear localization signals and codon usage, and ancestral reconstruction of the deaminase component.
Abstract: Base editors enable targeted single-nucleotide conversions in genomic DNA. Here we show that expression levels are a bottleneck in base-editing efficiency. We optimize cytidine (BE4) and adenine (ABE7.10) base editors by modification of nuclear localization signals (NLS) and codon usage, and ancestral reconstruction of the deaminase component. The resulting BE4max, AncBE4max, and ABEmax editors correct pathogenic SNPs with substantially increased efficiency in a variety of mammalian cell types.

Journal ArticleDOI
23 Aug 2018-Cell
TL;DR: By intersecting mouse chromatin accessibility with human genome-wide association summary statistics, this work identifies cell-type-specific enrichments of the heritability signal for hundreds of complex traits.

Journal ArticleDOI
TL;DR: A characterization of the full m6A methyltransferase complex in HeLa cells is reported identifying METTL3/METTL14/WTAP/VIRMA/HAKAI/ZC3H13 as the key components, and it is shown that VIRMA mediates preferential mRNA methylation in 3′UTR and near stop codon.
Abstract: N6-methyladenosine (m6A) is enriched in 3′untranslated region (3′UTR) and near stop codon of mature polyadenylated mRNAs in mammalian systems and has regulatory roles in eukaryotic mRNA transcriptome switch. Significantly, the mechanism for this modification preference remains unknown, however. Herein we report a characterization of the full m6A methyltransferase complex in HeLa cells identifying METTL3/METTL14/WTAP/VIRMA/HAKAI/ZC3H13 as the key components, and we show that VIRMA mediates preferential mRNA methylation in 3′UTR and near stop codon. Biochemical studies reveal that VIRMA recruits the catalytic core components METTL3/METTL14/WTAP to guide region-selective methylations. Around 60% of VIRMA mRNA immunoprecipitation targets manifest strong m6A enrichment in 3′UTR. Depletions of VIRMA and METTL3 induce 3′UTR lengthening of several hundred mRNAs with over 50% targets in common. VIRMA associates with polyadenylation cleavage factors CPSF5 and CPSF6 in an RNA-dependent manner. Depletion of CPSF5 leads to significant shortening of 3′UTR of over 2800 mRNAs, 84% of which are modified with m6A and have increased m6A peak density in 3′UTR and near stop codon after CPSF5 knockdown. Together, our studies provide insights into m6A deposition specificity in 3′UTR and its correlation with alternative polyadenylation.

Journal ArticleDOI
16 May 2018-Science
TL;DR: The crystal structure of the gB ectodomain from herpes simplex virus type 1 reveals a multidomain trimer with unexpected homology to glycoprotein G from vesicular stomatitis virus (VSV G).
Abstract: Glycoprotein B (gB) is the most conserved component of the complex cell-entry machinery of herpes viruses. A crystal structure of the gB ectodomain from herpes simplex virus type 1 reveals a multidomain trimer with unexpected homology to glycoprotein G from vesicular stomatitis virus (VSV G). An α-helical coiled-coil core relates gB to class I viral membrane fusion glycoproteins; two extended β hairpins with hydrophobic tips, homologous to fusion peptides in VSV G, relate gB to class II fusion proteins. Members of both classes accomplish fusion through a large-scale conformational change, triggered by a signal from a receptor-binding component. The domain connectivity within a gB monomer would permit such a rearrangement, including long-range translocations linked to viral and cellular membranes.

Journal ArticleDOI
TL;DR: It is demonstrated that Zc3h13 plays a critical role in anchoring WTAP, Virilizer, and Hakai in the nucleus to facilitate m6A methylation and to regulate mESC self-renewal.

Journal ArticleDOI
TL;DR: Investigation of human endometrial cancer in which a hotspot R298P mutation is present in a key component of the methyltransferase complex reveals reduced m6A mRNA methylation as an oncogenic mechanism in endometricrial cancer and identifies m 6A methylationAs a regulator of AKT signalling.
Abstract: N6-methyladenosine (m6A) messenger RNA methylation is a gene regulatory mechanism affecting cell differentiation and proliferation in development and cancer. To study the roles of m6A mRNA methylation in cell proliferation and tumorigenicity, we investigated human endometrial cancer in which a hotspot R298P mutation is present in a key component of the methyltransferase complex (METTL14). We found that about 70% of endometrial tumours exhibit reductions in m6A methylation that are probably due to either this METTL14 mutation or reduced expression of METTL3, another component of the methyltransferase complex. These changes lead to increased proliferation and tumorigenicity of endometrial cancer cells, likely through activation of the AKT pathway. Reductions in m6A methylation lead to decreased expression of the negative AKT regulator PHLPP2 and increased expression of the positive AKT regulator mTORC2. Together, these results reveal reduced m6A mRNA methylation as an oncogenic mechanism in endometrial cancer and identify m6A methylation as a regulator of AKT signalling.