scispace - formally typeset
Search or ask a question
Institution

Howard Hughes Medical Institute

NonprofitChevy Chase, Maryland, United States
About: Howard Hughes Medical Institute is a nonprofit organization based out in Chevy Chase, Maryland, United States. It is known for research contribution in the topics: Gene & RNA. The organization has 20371 authors who have published 34677 publications receiving 5247143 citations. The organization is also known as: HHMI & hhmi.org.


Papers
More filters
Journal ArticleDOI
14 Dec 2012-Science
TL;DR: A glimpse into the molecular biology of multiple emerging lncRNA systems reveals the “Wild West” landscape of their functions and mechanisms and the key problems to solve in the years ahead toward understanding these intriguing macromolecules.
Abstract: Recent studies show that transcription of the mammalian genome is not only pervasive but also enormously complex. It is estimated that an average of 10 transcription units, the vast majority of which make long noncoding RNAs (lncRNAs), may overlap each traditional coding gene. These lncRNAs include not only antisense, intronic, and intergenic transcripts but also pseudogenes and retrotransposons. Do they universally have function, or are they merely transcriptional by-products of conventional coding genes? A glimpse into the molecular biology of multiple emerging lncRNA systems reveals the "Wild West" landscape of their functions and mechanisms and the key problems to solve in the years ahead toward understanding these intriguing macromolecules.

1,140 citations

Journal ArticleDOI
TL;DR: Inspired by molecular modeling, the N,N-dimethylamino substituents in tetramethylrhodamine are replaced with four-membered azetidine rings, which doubles the quantum efficiency and improves the photon yield of the dye in applications ranging from in vitro single-molecule measurements to super-resolution imaging.
Abstract: Specific labeling of biomolecules with bright fluorophores is the keystone of fluorescence microscopy. Genetically encoded self-labeling tag proteins can be coupled to synthetic dyes inside living cells, resulting in brighter reporters than fluorescent proteins. Intracellular labeling using these techniques requires cell-permeable fluorescent ligands, however, limiting utility to a small number of classic fluorophores. Here we describe a simple structural modification that improves the brightness and photostability of dyes while preserving spectral properties and cell permeability. Inspired by molecular modeling, we replaced the N,N-dimethylamino substituents in tetramethylrhodamine with four-membered azetidine rings. This addition of two carbon atoms doubles the quantum efficiency and improves the photon yield of the dye in applications ranging from in vitro single-molecule measurements to super-resolution imaging. The novel substitution is generalizable, yielding a palette of chemical dyes with improved quantum efficiencies that spans the UV and visible range.

1,140 citations

Journal ArticleDOI
TL;DR: Dual-wavelength analysis of Hoechst dye-stained human, rhesus and miniature swine bone marrow cells reveals a small, distinct population of cells that efflux the dye in a manner identical to murine SP cells, suggesting the existence of a hitherto unrecognized population of hematopoietic stem cells that lack the CD34 surface marker classically associated with primitive hematopolietic cells.
Abstract: We previously described a method for isolating murine hematopoietic stem cells capable of reconstituting lethally irradiated recipients, which depends solely on dual-wavelength flow cytometric analysis of murine bone marrow cells stained with the fluorescent DNA-binding dye Hoechst 33342. This method, which appears to rely on the differential ability of stem cells to efflux the Hoechst dye, defines an extremely small and homogeneous population of cells (termed SP cells). We show here that dual-wavelength analysis of Hoechst dye-stained human, rhesus and miniature swine bone marrow cells reveals a small, distinct population of cells that efflux the dye in a manner identical to murine SP cells. Like the murine SP cells, both human and rhesus SP cells are primarily CD34-negative and lineage marker-negative. In vitro culture studies demonstrated that rhesus SP cells are highly enriched for long-term culture-initiating cells (LTC-ICs), an indicator of primitive hematopoietic cells, and have the capacity for differentiation into T cells. Although rhesus SP cells do not initially possess any hematopoietic colony-forming capability, they acquire the ability to form colonies after long-term culture on bone marrow stroma, coincident with their conversion to a CD34-positive phenotype. These studies suggest the existence of a hitherto unrecognized population of hematopoietic stem cells that lack the CD34 surface marker classically associated with primitive hematopoietic cells.

1,140 citations

Journal ArticleDOI
TL;DR: It is speculated that a wide variety of non-conservative mutations, consistent with loss of function alleles, in affected subjects lead to reduced sodium chloride reabsorption in the more common heterozygotes, potentially protecting against development of hypertension.
Abstract: Maintenance of fluid and electrolyte homeostasis is critical for normal neuromuscular function Bartter's syndrome is an autosomal recessive disease characterized by diverse abnormalities in electrolyte homeostasis including hypokalaemic metabolic alkalosis; Gitelman's syndrome represents the predominant subset of Bartter's patients having hypomagnesemia and hypocalciuria We now demonstrate complete linkage of Gitelman's syndrome to the locus encoding the renal thiazide-sensitive Na–Cl cotransporter, and identify a wide variety of non-conservative mutations, consistent with loss of function alleles, in affected subjects These findings demonstrate the molecular basis of Gitelman's syndrome We speculate that these mutant alleles lead to reduced sodium chloride reabsorption in the more common heterozygotes, potentially protecting against development of hypertension

1,140 citations

Journal ArticleDOI
13 Aug 2010-Science
TL;DR: The identification of three broadly neutralizing antibodies, isolated from an HIV-1–infected individual, that exhibited great breadth and potency of neutralization and were specific for the co-receptor CD4-binding site of the glycoprotein 120 (gp120), part of the viral Env spike.
Abstract: During HIV-1 infection, antibodies are generated against the region of the viral gp120 envelope glycoprotein that binds CD4, the primary receptor for HIV-1. Among these antibodies, VRC01 achieves broad neutralization of diverse viral strains. We determined the crystal structure of VRC01 in complex with a human immunodeficiency virus HIV-1 gp120 core. VRC01 partially mimics CD4 interaction with gp120. A shift from the CD4-defined orientation, however, focuses VRC01 onto the vulnerable site of initial CD4 attachment, allowing it to overcome the glycan and conformational masking that diminishes the neutralization potency of most CD4-binding-site antibodies. To achieve this recognition, VRC01 contacts gp120 mainly through immunoglobulin V-gene regions substantially altered from their genomic precursors. Partial receptor mimicry and extensive affinity maturation thus facilitate neutralization of HIV-1 by natural human antibodies.

1,139 citations


Authors

Showing all 20486 results

NameH-indexPapersCitations
Bert Vogelstein247757332094
Richard A. Flavell2311328205119
Steven A. Rosenberg2181204199262
Kenneth W. Kinzler215640243944
Robert J. Lefkowitz214860147995
Rob Knight2011061253207
Irving L. Weissman2011141172504
Ronald M. Evans199708166722
Francis S. Collins196743250787
Craig B. Thompson195557173172
Thomas C. Südhof191653118007
Joan Massagué189408149951
Stuart H. Orkin186715112182
John P. A. Ioannidis1851311193612
Eric R. Kandel184603113560
Network Information
Related Institutions (5)
Salk Institute for Biological Studies
13.1K papers, 1.6M citations

98% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

96% related

Broad Institute
11.6K papers, 1.5M citations

96% related

Scripps Research Institute
32.8K papers, 2.9M citations

95% related

Rockefeller University
32.9K papers, 2.9M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022228
20211,583
20201,587
20191,591
20181,394