scispace - formally typeset
Search or ask a question
Institution

Howard Hughes Medical Institute

NonprofitChevy Chase, Maryland, United States
About: Howard Hughes Medical Institute is a nonprofit organization based out in Chevy Chase, Maryland, United States. It is known for research contribution in the topics: Gene & RNA. The organization has 20371 authors who have published 34677 publications receiving 5247143 citations. The organization is also known as: HHMI & hhmi.org.


Papers
More filters
Journal ArticleDOI
Swapan Mallick1, Swapan Mallick2, Swapan Mallick3, Heng Li1, Mark Lipson2, Iain Mathieson2, Melissa Gymrek, Fernando Racimo4, Mengyao Zhao3, Mengyao Zhao1, Mengyao Zhao2, Niru Chennagiri2, Niru Chennagiri3, Niru Chennagiri1, Susanne Nordenfelt3, Susanne Nordenfelt1, Susanne Nordenfelt2, Arti Tandon2, Arti Tandon1, Pontus Skoglund2, Pontus Skoglund1, Iosif Lazaridis1, Iosif Lazaridis2, Sriram Sankararaman5, Sriram Sankararaman2, Sriram Sankararaman1, Qiaomei Fu6, Qiaomei Fu2, Qiaomei Fu1, Nadin Rohland1, Nadin Rohland2, Gabriel Renaud7, Yaniv Erlich8, Thomas Willems9, Carla Gallo10, Jeffrey P. Spence4, Yun S. Song11, Yun S. Song4, Giovanni Poletti10, Francois Balloux12, George van Driem13, Peter de Knijff14, Irene Gallego Romero15, Aashish R. Jha16, Doron M. Behar17, Claudio M. Bravi18, Cristian Capelli19, Tor Hervig20, Andrés Moreno-Estrada, Olga L. Posukh21, Elena Balanovska, Oleg Balanovsky22, Sena Karachanak-Yankova23, Hovhannes Sahakyan17, Hovhannes Sahakyan24, Draga Toncheva23, Levon Yepiskoposyan24, Chris Tyler-Smith25, Yali Xue25, M. Syafiq Abdullah26, Andres Ruiz-Linares12, Cynthia M. Beall27, Anna Di Rienzo16, Choongwon Jeong16, Elena B. Starikovskaya, Ene Metspalu28, Ene Metspalu17, Jüri Parik17, Richard Villems28, Richard Villems17, Richard Villems29, Brenna M. Henn30, Ugur Hodoglugil31, Robert W. Mahley32, Antti Sajantila33, George Stamatoyannopoulos34, Joseph Wee, Rita Khusainova35, Elza Khusnutdinova35, Sergey Litvinov35, Sergey Litvinov17, George Ayodo36, David Comas37, Michael F. Hammer38, Toomas Kivisild39, Toomas Kivisild17, William Klitz, Cheryl A. Winkler40, Damian Labuda41, Michael J. Bamshad34, Lynn B. Jorde42, Sarah A. Tishkoff11, W. Scott Watkins42, Mait Metspalu17, Stanislav Dryomov, Rem I. Sukernik43, Lalji Singh44, Lalji Singh5, Kumarasamy Thangaraj44, Svante Pääbo7, Janet Kelso7, Nick Patterson1, David Reich3, David Reich2, David Reich1 
13 Oct 2016-Nature
TL;DR: It is demonstrated that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.
Abstract: Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.

1,133 citations

Journal ArticleDOI
TL;DR: SourceTracker, a Bayesian approach to estimate the proportion of contaminants in a given community that come from possible source environments, is presented, and microbial surveys from neonatal intensive care units, offices and molecular biology laboratories are applied.
Abstract: Contamination is a critical issue in high-throughput metagenomic studies, yet progress toward a comprehensive solution has been limited. We present SourceTracker, a Bayesian approach to estimate the proportion of contaminants in a given community that come from possible source environments. We applied SourceTracker to microbial surveys from neonatal intensive care units (NICUs), offices and molecular biology laboratories, and provide a database of known contaminants for future testing.

1,131 citations

Journal ArticleDOI
25 Nov 1998-Cell
TL;DR: It is reported that this pathway operates in keratinocytes and that mice expressing a stabilized beta-catenin controlled by an epidermal promoter undergo a process resembling de novo hair morphogenesis, suggesting that transient beta-Catenin stabilization may be a key player in the long-sought epidersmal signal leading to hair development and implicate aberrant beta- catenin activation in hair tumors.

1,130 citations

Journal ArticleDOI
TL;DR: Three subgroups comprise the TRP channel family; the best understood of these mediates responses to painful stimuli, and other proposed functions include repletion of intracellular calcium stores, receptor-mediated excitation and modulation of the cell cycle.
Abstract: Mammalian homologues of the Drosophila transient receptor potential (TRP) channel gene encode a family of at least 20 ion channel proteins. They are widely distributed in mammalian tissues, but their specific physiological functions are largely unknown. A common theme that links the TRP channels is their activation or modulation by phosphatidylinositol signal transduction pathways. The channel subunits have six transmembrane domains that most probably assemble into tetramers to form non-selective cationic channels, which allow for the influx of calcium ions into cells. Three subgroups comprise the TRP channel family; the best understood of these mediates responses to painful stimuli. Other proposed functions include repletion of intracellular calcium stores, receptor-mediated excitation and modulation of the cell cycle.

1,130 citations

Journal ArticleDOI
TL;DR: This approach is called BEAMing on the basis of four of its principal components (beads, emulsion, amplification, and magnetics) and can be used for the identification of rare mutations as well as to study variations in gene sequences or transcripts in specific populations or tissues.
Abstract: Many areas of biomedical research depend on the analysis of uncommon variations in individual genes or transcripts. Here we describe a method that can quantify such variation at a scale and ease heretofore unattainable. Each DNA molecule in a collection of such molecules is converted into a single magnetic particle to which thousands of copies of DNA identical in sequence to the original are bound. This population of beads then corresponds to a one-to-one representation of the starting DNA molecules. Variation within the original population of DNA molecules can then be simply assessed by counting fluorescently labeled particles via flow cytometry. This approach is called BEAMing on the basis of four of its principal components (beads, emulsion, amplification, and magnetics). Millions of individual DNA molecules can be assessed in this fashion with standard laboratory equipment. Moreover, specific variants can be isolated by flow sorting and used for further experimentation. BEAMing can be used for the identification and quantification of rare mutations as well as to study variations in gene sequences or transcripts in specific populations or tissues.

1,130 citations


Authors

Showing all 20486 results

NameH-indexPapersCitations
Bert Vogelstein247757332094
Richard A. Flavell2311328205119
Steven A. Rosenberg2181204199262
Kenneth W. Kinzler215640243944
Robert J. Lefkowitz214860147995
Rob Knight2011061253207
Irving L. Weissman2011141172504
Ronald M. Evans199708166722
Francis S. Collins196743250787
Craig B. Thompson195557173172
Thomas C. Südhof191653118007
Joan Massagué189408149951
Stuart H. Orkin186715112182
John P. A. Ioannidis1851311193612
Eric R. Kandel184603113560
Network Information
Related Institutions (5)
Salk Institute for Biological Studies
13.1K papers, 1.6M citations

98% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

96% related

Broad Institute
11.6K papers, 1.5M citations

96% related

Scripps Research Institute
32.8K papers, 2.9M citations

95% related

Rockefeller University
32.9K papers, 2.9M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022228
20211,583
20201,587
20191,591
20181,394