scispace - formally typeset
Search or ask a question
Institution

Howard Hughes Medical Institute

NonprofitChevy Chase, Maryland, United States
About: Howard Hughes Medical Institute is a nonprofit organization based out in Chevy Chase, Maryland, United States. It is known for research contribution in the topics: Gene & RNA. The organization has 20371 authors who have published 34677 publications receiving 5247143 citations. The organization is also known as: HHMI & hhmi.org.


Papers
More filters
Journal ArticleDOI
TL;DR: The ability of circulating tumor DNA (ctDNA) to detect tumors in 640 patients with various cancer types was evaluated and suggested that ctDNA is a broadly applicable, sensitive, and specific biomarker that can be used for a variety of clinical and research purposes.
Abstract: The development of noninvasive methods to detect and monitor tumors continues to be a major challenge in oncology. We used digital polymerase chain reaction-based technologies to evaluate the ability of circulating tumor DNA (ctDNA) to detect tumors in 640 patients with various cancer types. We found that ctDNA was detectable in >75% of patients with advanced pancreatic, ovarian, colorectal, bladder, gastroesophageal, breast, melanoma, hepatocellular, and head and neck cancers, but in less than 50% of primary brain, renal, prostate, or thyroid cancers. In patients with localized tumors, ctDNA was detected in 73, 57, 48, and 50% of patients with colorectal cancer, gastroesophageal cancer, pancreatic cancer, and breast adenocarcinoma, respectively. ctDNA was often present in patients without detectable circulating tumor cells, suggesting that these two biomarkers are distinct entities. In a separate panel of 206 patients with metastatic colorectal cancers, we showed that the sensitivity of ctDNA for detection of clinically relevant KRAS gene mutations was 87.2% and its specificity was 99.2%. Finally, we assessed whether ctDNA could provide clues into the mechanisms underlying resistance to epidermal growth factor receptor blockade in 24 patients who objectively responded to therapy but subsequently relapsed. Twenty-three (96%) of these patients developed one or more mutations in genes involved in the mitogen-activated protein kinase pathway. Together, these data suggest that ctDNA is a broadly applicable, sensitive, and specific biomarker that can be used for a variety of clinical and research purposes in patients with multiple different types of cancer.

3,533 citations

Journal ArticleDOI
TL;DR: Modifications to the CTFFIND algorithm are described which make it significantly faster and more suitable for use with images collected using modern technologies such as dose fractionation and phase plates.

3,512 citations

Journal ArticleDOI
20 Jun 2014-Science
TL;DR: The genome sequence of single cells isolated from brain glioblastomas was examined, which revealed shared chromosomal changes but also extensive transcription variation, including genes related to signaling, which represent potential therapeutic targets.
Abstract: Human cancers are complex ecosystems composed of cells with distinct phenotypes, genotypes, and epigenetic states, but current models do not adequately reflect tumor composition in patients. We used single-cell RNA sequencing (RNA-seq) to profile 430 cells from five primary glioblastomas, which we found to be inherently variable in their expression of diverse transcriptional programs related to oncogenic signaling, proliferation, complement/immune response, and hypoxia. We also observed a continuum of stemness-related expression states that enabled us to identify putative regulators of stemness in vivo. Finally, we show that established glioblastoma subtype classifiers are variably expressed across individual cells within a tumor and demonstrate the potential prognostic implications of such intratumoral heterogeneity. Thus, we reveal previously unappreciated heterogeneity in diverse regulatory programs central to glioblastoma biology, prognosis, and therapy.

3,475 citations

Journal ArticleDOI
16 Dec 1993-Nature
TL;DR: It is found that over expression of p21 inhibits the activity of each member of the cyclin/CDK family, and this results indicate that p21 may be a universal inhibitor of cyclin kinases.
Abstract: Deregulation of cell proliferation is a hallmark of neoplastic transformation. Alteration in growth control pathways must translate into changes in the cell-cycle regulatory machinery, but the mechanism by which this occurs is largely unknown. Compared with normal human fibroblasts, cells transformed with a variety of viral oncoproteins show striking changes in the subunit composition of the cyclin-dependent kinases (CDKs). In normal cells, CDKs exist predominantly in multiple quaternary complexes, each containing a CDK, cyclin, proliferating cell nuclear antigen and the p21 protein. However, in many transformed cells, proliferating cell nuclear antigen and p21 are lost from these multiprotein enzymes. Here we have investigated the significance of this phenomenon by molecular cloning of p21 and in vitro reconstitution of the quaternary cell-cycle kinase complexes. We find that p21 inhibits the activity of each member of the cyclin/CDK family. Furthermore, overexpression of p21 inhibits the proliferation of mammalian cells. Our results indicate that p21 may be a universal inhibitor of cyclin kinases.

3,442 citations

Journal ArticleDOI
TL;DR: Target deletion of several of these dopamine receptor genes in mice should provide valuable information about their physiological functions and provide unequivocal evidence for the involvement of one of these receptors in the etiology of various central nervous system disorders.
Abstract: Missale, Cristina, S. Russel Nash, Susan W. Robinson, Mohamed Jaber, and Marc G. Caron. Dopamine Receptors: From Structure to Function. Physiol. Rev. 78: 189–225, 1998. — The diverse physiological actions of dopamine are mediated by at least five distinct G protein-coupled receptor subtypes. Two D1-like receptor subtypes (D1 and D5) couple to the G protein Gs and activate adenylyl cyclase. The other receptor subtypes belong to the D2-like subfamily (D2 , D3 , and D4) and are prototypic of G protein-coupled receptors that inhibit adenylyl cyclase and activate K+ channels. The genes for the D1 and D5 receptors are intronless, but pseudogenes of the D5 exist. The D2 and D3 receptors vary in certain tissues and species as a result of alternative splicing, and the human D4 receptor gene exhibits extensive polymorphic variation. In the central nervous system, dopamine receptors are widely expressed because they are involved in the control of locomotion, cognition, emotion, and affect as well as neuroendocrine s...

3,433 citations


Authors

Showing all 20486 results

NameH-indexPapersCitations
Bert Vogelstein247757332094
Richard A. Flavell2311328205119
Steven A. Rosenberg2181204199262
Kenneth W. Kinzler215640243944
Robert J. Lefkowitz214860147995
Rob Knight2011061253207
Irving L. Weissman2011141172504
Ronald M. Evans199708166722
Francis S. Collins196743250787
Craig B. Thompson195557173172
Thomas C. Südhof191653118007
Joan Massagué189408149951
Stuart H. Orkin186715112182
John P. A. Ioannidis1851311193612
Eric R. Kandel184603113560
Network Information
Related Institutions (5)
Salk Institute for Biological Studies
13.1K papers, 1.6M citations

98% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

96% related

Broad Institute
11.6K papers, 1.5M citations

96% related

Scripps Research Institute
32.8K papers, 2.9M citations

95% related

Rockefeller University
32.9K papers, 2.9M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022228
20211,583
20201,587
20191,591
20181,394