scispace - formally typeset
Search or ask a question
Institution

Howard Hughes Medical Institute

NonprofitChevy Chase, Maryland, United States
About: Howard Hughes Medical Institute is a nonprofit organization based out in Chevy Chase, Maryland, United States. It is known for research contribution in the topics: Gene & RNA. The organization has 20371 authors who have published 34677 publications receiving 5247143 citations. The organization is also known as: HHMI & hhmi.org.


Papers
More filters
Journal ArticleDOI
TL;DR: A new cloning method, sequence and ligation–independent cloning (SLIC), which allows the assembly of multiple DNA fragments in a single reaction using in vitro homologous recombination and single-strand annealing, which allows much greater versatility in the generation of recombinant DNA for the purposes of synthetic biology.
Abstract: We describe a new cloning method, sequence and ligation–independent cloning (SLIC), which allows the assembly of multiple DNA fragments in a single reaction using in vitro homologous recombination and single-strand annealing. SLIC mimics in vivo homologous recombination by relying on exonuclease-generated ssDNA overhangs in insert and vector fragments, and the assembly of these fragments by recombination in vitro. SLIC inserts can also be prepared by incomplete PCR (iPCR) or mixed PCR. SLIC allows efficient and reproducible assembly of recombinant DNA with as many as 5 and 10 fragments simultaneously. SLIC circumvents the sequence requirements of traditional methods and functions much more efficiently at very low DNA concentrations when combined with RecA to catalyze homologous recombination. This flexibility allows much greater versatility in the generation of recombinant DNA for the purposes of synthetic biology.

992 citations

Journal ArticleDOI
16 Feb 2012-Nature
TL;DR: The discovery of microRNAs almost two decades ago established a new paradigm of gene regulation, and during the past ten years these tiny non-coding RNAs have been linked to virtually all known physiological and pathological processes, including cancer.
Abstract: MicroRNAs (miRNAs) are small, evolutionarily conserved, non-coding RNAs of 18–25 nucleotides in length that have an important function in gene regulation. Mature miRNA products are generated from a longer primary miRNA (pri-miRNA) transcript through sequential processing by the ribonucleases Drosha and Dicer1 (ref. 1). The first description of miRNAs was made in 1993 in Caenorhabditis elegans as regulators of developmental timing 2,3 . Later, miRNAs were shown to inhibit their target genes through sequences that are complementary to the target messenger RNA, leading to decreased expression of the target protein 1 (Box 1). This discovery resulted in a pattern shift in our understanding of gene regulation because miRNAs are now known to repress thousands of target genes and coordinate normal processes, including cellular proliferation, differentiation and apoptosis. The aberrant expression or alteration of miRNAs also contributes to a range of human pathologies, including cancer. The control of gene expression by miRNAs is a process seen in virtually all cancer cells. These cells show alterations in their miRNA expression profiles, and emerging data indicate that these patterns could be useful in improving the classification of cancers and predicting their behaviour. In addition, miRNAs have now been shown to behave as cancer ‘drivers’ in the same way as protein-coding genes whose alterations actively and profoundly contribute to malignant transformation and cancer progression. Owing to the capacity of miRNAs to modulate tens to hundreds of target genes, they are emerging as important factors in the control of the ‘hallmarks’ of cancer 4 . In this Review, we summarize the findings that provide evidence for the central role of miRNAs in controlling cellular transformation and tumour progression. We also highlight the potential uses of miRNAs and miRNA-based drugs in cancer therapy and discuss the obstacles that will need to be overcome. miRNAs are cancer genes In 2002, Croce and colleagues first demonstrated that an miRNA cluster was frequently deleted or downregulated in chronic lymphocytic leukaemia 5 . This discovery suggested that non-coding genes were contributing to the development of cancer, and paved the way for the closer investigation of miRNA loss or amplification in tumours. Subsequently, miRNAs were shown to be differentially expressed in cancer cells, in which they formed distinct and unique miRNA expression patterns 6 , and whole classes of miRNAs could be controlled directly by key oncogenic transcription factors 7 . In parallel, studies with mouse models established that miRNAs were actively involved in tumorigenesis

992 citations

Journal ArticleDOI
TL;DR: It is suggested that the human genome contains many more miRNAs than currently identified and an experimental approach called miRNA serial analysis of gene expression (miRAGE) is developed and used to perform the largest experimental analysis of human mi RNAs to date.
Abstract: MicroRNAs (miRNAs) are a class of small noncoding RNAs that have important regulatory roles in multicellular organisms. The public miRNA database contains 321 human miRNA sequences, 234 of which have been experimentally verified. To explore the possibility that additional miRNAs are present in the human genome, we have developed an experimental approach called miRNA serial analysis of gene expression (miRAGE) and used it to perform the largest experimental analysis of human miRNAs to date. Sequence analysis of 273,966 small RNA tags from human colorectal cells allowed us to identify 200 known mature miRNAs, 133 novel miRNA candidates, and 112 previously uncharacterized miRNA* forms. To aid in the evaluation of candidate miRNAs, we disrupted the Dicer locus in three human colorectal cancer cell lines and examined known and novel miRNAs in these cells. These studies suggest that the human genome contains many more miRNAs than currently identified and provide an approach for the large-scale experimental cloning of novel human miRNAs in human tissues.

991 citations

Journal ArticleDOI
19 May 1995-Cell
TL;DR: Transient overexpression of RIP causes transfected cells to undergo the morphological changes characteristic of apoptosis, and these properties indicate that RIP is a novel form of apoptotic-inducing protein.

991 citations

Journal ArticleDOI
TL;DR: A crystal structure of the soluble ectodomain of E from dengue virus type 2 reveals a hydrophobic pocket lined by residues that influence the pH threshold for fusion, which points to a structural pathway for the fusion-activating transition and suggests a strategy for finding small-molecule inhibitors of d Dengue and other flaviviruses.
Abstract: Dengue virus is an emerging global health threat. Its major envelope glycoprotein, E, mediates viral attachment and entry by membrane fusion. A crystal structure of the soluble ectodomain of E from dengue virus type 2 reveals a hydrophobic pocket lined by residues that influence the pH threshold for fusion. The pocket, which accepts a hydrophobic ligand, opens and closes through a conformational shift in a β-hairpin at the interface between two domains. These features point to a structural pathway for the fusion-activating transition and suggest a strategy for finding small-molecule inhibitors of dengue and other flaviviruses.

989 citations


Authors

Showing all 20486 results

NameH-indexPapersCitations
Bert Vogelstein247757332094
Richard A. Flavell2311328205119
Steven A. Rosenberg2181204199262
Kenneth W. Kinzler215640243944
Robert J. Lefkowitz214860147995
Rob Knight2011061253207
Irving L. Weissman2011141172504
Ronald M. Evans199708166722
Francis S. Collins196743250787
Craig B. Thompson195557173172
Thomas C. Südhof191653118007
Joan Massagué189408149951
Stuart H. Orkin186715112182
John P. A. Ioannidis1851311193612
Eric R. Kandel184603113560
Network Information
Related Institutions (5)
Salk Institute for Biological Studies
13.1K papers, 1.6M citations

98% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

96% related

Broad Institute
11.6K papers, 1.5M citations

96% related

Scripps Research Institute
32.8K papers, 2.9M citations

95% related

Rockefeller University
32.9K papers, 2.9M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022228
20211,583
20201,587
20191,591
20181,394