scispace - formally typeset
Search or ask a question
Institution

Howard Hughes Medical Institute

NonprofitChevy Chase, Maryland, United States
About: Howard Hughes Medical Institute is a nonprofit organization based out in Chevy Chase, Maryland, United States. It is known for research contribution in the topics: Gene & RNA. The organization has 20371 authors who have published 34677 publications receiving 5247143 citations. The organization is also known as: HHMI & hhmi.org.


Papers
More filters
Journal ArticleDOI
28 Aug 2013-Nature
TL;DR: Remodelling cellular metabolism constitutes a recurrent pattern in ccRCC that correlates with tumour stage and severity and offers new views on the opportunities for disease treatment.
Abstract: Genetic changes underlying clear cell renal cell carcinoma (ccRCC) include alterations in genes controlling cellular oxygen sensing (for example, VHL) and the maintenance of chromatin states (for example, PBRM1). We surveyed more than 400 tumours using different genomic platforms and identified 19 significantly mutated genes. The PI(3)K/AKT pathway was recurrently mutated, suggesting this pathway as a potential therapeutic target. Widespread DNA hypomethylation was associated with mutation of the H3K36 methyltransferase SETD2, and integrative analysis suggested that mutations involving the SWI/SNF chromatin remodelling complex (PBRM1, ARID1A, SMARCA4) could have far-reaching effects on other pathways. Aggressive cancers demonstrated evidence of a metabolic shift, involving downregulation of genes involved in the TCA cycle, decreased AMPK and PTEN protein levels, upregulation of the pentose phosphate pathway and the glutamine transporter genes, increased acetyl-CoA carboxylase protein, and altered promoter methylation of miR-21 (also known as MIR21) and GRB10. Remodelling cellular metabolism thus constitutes a recurrent pattern in ccRCC that correlates with tumour stage and severity and offers new views on the opportunities for disease treatment.

2,548 citations

Journal ArticleDOI
TL;DR: The bioorthogonal chemical reactions developed to date are described and how they can be used to study biomolecules.
Abstract: The study of biomolecules in their native environments is a challenging task because of the vast complexity of cellular systems. Technologies developed in the last few years for the selective modification of biological species in living systems have yielded new insights into cellular processes. Key to these new techniques are bioorthogonal chemical reactions, whose components must react rapidly and selectively with each other under physiological conditions in the presence of the plethora of functionality necessary to sustain life. Herein we describe the bioorthogonal chemical reactions developed to date and how they can be used to study biomolecules.

2,537 citations

Journal ArticleDOI
21 Sep 2006-Nature
TL;DR: The data indicate that the immunoregulatory PD-1/PD-L1 pathway is operative during a persistent viral infection in humans, and define a reversible defect in HIV-specific T-cell function.
Abstract: Functional impairment of T cells is characteristic of many chronic mouse and human viral infections. The inhibitory receptor programmed death 1 (PD-1; also known as PDCD1), a negative regulator of activated T cells, is markedly upregulated on the surface of exhausted virus-specific CD8 T cells in mice. Blockade of this pathway using antibodies against the PD ligand 1 (PD-L1, also known as CD274) restores CD8 T-cell function and reduces viral load. To investigate the role of PD-1 in a chronic human viral infection, we examined PD-1 expression on human immunodeficiency virus (HIV)-specific CD8 T cells in 71 clade-C-infected people who were naive to anti-HIV treatments, using ten major histocompatibility complex (MHC) class I tetramers specific for frequently targeted epitopes. Here we report that PD-1 is significantly upregulated on these cells, and expression correlates with impaired HIV-specific CD8 T-cell function as well as predictors of disease progression: positively with plasma viral load and inversely with CD4 T-cell count. PD-1 expression on CD4 T cells likewise showed a positive correlation with viral load and an inverse correlation with CD4 T-cell count, and blockade of the pathway augmented HIV-specific CD4 and CD8 T-cell function. These data indicate that the immunoregulatory PD-1/PD-L1 pathway is operative during a persistent viral infection in humans, and define a reversible defect in HIV-specific T-cell function. Moreover, this pathway of reversible T-cell impairment provides a potential target for enhancing the function of exhausted T cells in chronic HIV infection.

2,525 citations

Journal ArticleDOI
14 Dec 2007-Cell
TL;DR: It is shown that C1q, the initiating protein in the classical complement cascade, is expressed by postnatal neurons in response to immature astrocytes and is localized to synapses throughout the postnatal CNS and retina, supporting a model in which unwanted synapses are tagged by complement for elimination and suggesting that complement-mediated synapse elimination may become aberrantly reactivated in neurodegenerative disease.

2,501 citations

Journal ArticleDOI
18 Sep 1997-Nature
TL;DR: Examination of transcripts induced by p53 expression before the onset of apoptosis stimulated additional biochemical and pharmacological experiments suggesting that p53 results in apoptosis through a three-step process: the transcriptional induction of redox-related genes; the formation of reactive oxygen species; and the oxidative degradation of mitochondrial components, culminating in cell death.
Abstract: The inactivation of the p53 gene in a large proportion of human cancers has inspired an intense search for the encoded protein's physiological and biological properties. Expression of p53 induces either a stable growth arrest or programmed cell death (apoptosis). In human colorectal cancers, the growth arrest is dependent on the transcriptional induction of the protein p21WAF1/CIP1(ref. 1), but the mechanisms underlying the development of p53-dependent apoptosis are largely unknown2. As the most well documented biochemical property of p53 is its ability to activate transcription of genes, we examined in detail the transcripts induced by p53 expression before the onset of apoptosis. Of 7,202 transcripts identified, only 14 (0.19%) were found to be markedly increased in p53-expressing cells compared with control cells. Strikingly, many of these genes were predicted to encode proteins that could generate or respond to oxidative stress, including one that is implicated in apoptosis in plant meristems. These observations stimulated additional biochemical and pharmacological experiments suggesting that p53 results in apoptosis through a three-step process: (1) the transcriptional induction of redox-related genes; (2) the formation of reactive oxygen species; and (3) the oxidative degradation of mitochondrial components, culminating in cell death.

2,469 citations


Authors

Showing all 20486 results

NameH-indexPapersCitations
Bert Vogelstein247757332094
Richard A. Flavell2311328205119
Steven A. Rosenberg2181204199262
Kenneth W. Kinzler215640243944
Robert J. Lefkowitz214860147995
Rob Knight2011061253207
Irving L. Weissman2011141172504
Ronald M. Evans199708166722
Francis S. Collins196743250787
Craig B. Thompson195557173172
Thomas C. Südhof191653118007
Joan Massagué189408149951
Stuart H. Orkin186715112182
John P. A. Ioannidis1851311193612
Eric R. Kandel184603113560
Network Information
Related Institutions (5)
Salk Institute for Biological Studies
13.1K papers, 1.6M citations

98% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

96% related

Broad Institute
11.6K papers, 1.5M citations

96% related

Scripps Research Institute
32.8K papers, 2.9M citations

95% related

Rockefeller University
32.9K papers, 2.9M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022228
20211,583
20201,587
20191,591
20181,394