scispace - formally typeset
Search or ask a question
Institution

Howard Hughes Medical Institute

NonprofitChevy Chase, Maryland, United States
About: Howard Hughes Medical Institute is a nonprofit organization based out in Chevy Chase, Maryland, United States. It is known for research contribution in the topics: Gene & RNA. The organization has 20371 authors who have published 34677 publications receiving 5247143 citations. The organization is also known as: HHMI & hhmi.org.


Papers
More filters
Journal ArticleDOI
09 Apr 2010-Science
TL;DR: Results support the emerging view that the gut microbiota contributes to metabolic disease and suggest that malfunction of the innate immune system may promote the development of metabolic syndrome.
Abstract: Metabolic syndrome is a group of obesity-related metabolic abnormalities that increase an individual's risk of developing type 2 diabetes and cardiovascular disease. Here, we show that mice genetically deficient in Toll-like receptor 5 (TLR5), a component of the innate immune system that is expressed in the gut mucosa and that helps defend against infection, exhibit hyperphagia and develop hallmark features of metabolic syndrome, including hyperlipidemia, hypertension, insulin resistance, and increased adiposity. These metabolic changes correlated with changes in the composition of the gut microbiota, and transfer of the gut microbiota from TLR5-deficient mice to wild-type germ-free mice conferred many features of metabolic syndrome to the recipients. Food restriction prevented obesity, but not insulin resistance, in the TLR5-deficient mice. These results support the emerging view that the gut microbiota contributes to metabolic disease and suggest that malfunction of the innate immune system may promote the development of metabolic syndrome.

1,804 citations

Journal ArticleDOI
08 May 2019-Nature
TL;DR: The original Cancer Cell Line Encyclopedia is expanded with deeper characterization of over 1,000 cell lines, including genomic, transcriptomic, and proteomic data, and integration with drug-sensitivity and gene-dependency data, which reveals potential targets for cancer drugs and associated biomarkers.
Abstract: Large panels of comprehensively characterized human cancer models, including the Cancer Cell Line Encyclopedia (CCLE), have provided a rigorous framework with which to study genetic variants, candidate targets, and small-molecule and biological therapeutics and to identify new marker-driven cancer dependencies. To improve our understanding of the molecular features that contribute to cancer phenotypes, including drug responses, here we have expanded the characterizations of cancer cell lines to include genetic, RNA splicing, DNA methylation, histone H3 modification, microRNA expression and reverse-phase protein array data for 1,072 cell lines from individuals of various lineages and ethnicities. Integration of these data with functional characterizations such as drug-sensitivity, short hairpin RNA knockdown and CRISPR-Cas9 knockout data reveals potential targets for cancer drugs and associated biomarkers. Together, this dataset and an accompanying public data portal provide a resource for the acceleration of cancer research using model cancer cell lines.

1,801 citations

Journal ArticleDOI
25 Feb 2000-Science
TL;DR: Both intrinsic and extrinsic signals regulate stem cell fate and some of these signals have now been identified and can be exploited in the application of stem cells to tissue replacement therapy.
Abstract: Stem cells are currently in the news for two reasons: the successful cultivation of human embryonic stem cell lines and reports that adult stem cells can differentiate into developmentally unrelated cell types, such as nerve cells into blood cells Both intrinsic and extrinsic signals regulate stem cell fate and some of these signals have now been identified Certain aspects of the stem cell microenvironment, or niche, are conserved between tissues, and this can be exploited in the application of stem cells to tissue replacement therapy

1,798 citations

Journal ArticleDOI
TL;DR: The multilayered effects of drug–target interactions, including the essential cellular processes that are inhibited by bactericidal antibiotics and the associated cellular response mechanisms that contribute to killing are discussed.
Abstract: Antibiotic drug-target interactions, and their respective direct effects, are generally well characterized. By contrast, the bacterial responses to antibiotic drug treatments that contribute to cell death are not as well understood and have proven to be complex as they involve many genetic and biochemical pathways. In this Review, we discuss the multilayered effects of drug-target interactions, including the essential cellular processes that are inhibited by bactericidal antibiotics and the associated cellular response mechanisms that contribute to killing. We also discuss new insights into these mechanisms that have been revealed through the study of biological networks, and describe how these insights, together with related developments in synthetic biology, could be exploited to create new antibacterial therapies.

1,796 citations

Journal ArticleDOI
TL;DR: An extension of the infomax algorithm of Bell and Sejnowski (1995) is presented that is able blindly to separate mixed signals with sub- and supergaussian source distributions and is effective at separating artifacts such as eye blinks and line noise from weaker electrical signals that arise from sources in the brain.
Abstract: An extension of the infomax algorithm of Bell and Sejnowski (1995) is presented that is able blindly to separate mixed signals with sub- and supergaussian source distributions. This was achieved by using a simple type of learning rule first derived by Girolami (1997) by choosing negentropy as a projection pursuit index. Parameterized probability distributions that have sub- and supergaussian regimes were used to derive a general learning rule that preserves the simple architecture proposed by Bell and Sejnowski (1995), is optimized using the natural gradient by Amari (1998), and uses the stability analysis of Cardoso and Laheld (1996) to switch between sub- and supergaussian regimes. We demonstrate that the extended infomax algorithm is able to separate 20 sources with a variety of source distributions easily. Applied to high-dimensional data from electroencephalographic recordings, it is effective at separating artifacts such as eye blinks and line noise from weaker electrical signals that arise from sou...

1,795 citations


Authors

Showing all 20486 results

NameH-indexPapersCitations
Bert Vogelstein247757332094
Richard A. Flavell2311328205119
Steven A. Rosenberg2181204199262
Kenneth W. Kinzler215640243944
Robert J. Lefkowitz214860147995
Rob Knight2011061253207
Irving L. Weissman2011141172504
Ronald M. Evans199708166722
Francis S. Collins196743250787
Craig B. Thompson195557173172
Thomas C. Südhof191653118007
Joan Massagué189408149951
Stuart H. Orkin186715112182
John P. A. Ioannidis1851311193612
Eric R. Kandel184603113560
Network Information
Related Institutions (5)
Salk Institute for Biological Studies
13.1K papers, 1.6M citations

98% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

96% related

Broad Institute
11.6K papers, 1.5M citations

96% related

Scripps Research Institute
32.8K papers, 2.9M citations

95% related

Rockefeller University
32.9K papers, 2.9M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022228
20211,583
20201,587
20191,591
20181,394