scispace - formally typeset
Search or ask a question
Institution

Huawei

CompanyShenzhen, China
About: Huawei is a company organization based out in Shenzhen, China. It is known for research contribution in the topics: Terminal (electronics) & Node (networking). The organization has 41417 authors who have published 44698 publications receiving 343496 citations. The organization is also known as: Huawei Technologies & Huawei Technologies Co., Ltd..


Papers
More filters
Book ChapterDOI
Yi Wang1, Zhenyu Shi1
01 Jan 2017
TL;DR: This chapter introduces the key technologies of mmWave communications based on pioneering researches and discusses network architecture, particularly considering unified access and backhaul.
Abstract: Mobile communications in millimeter wave (mmWave) bands have recently attained a wide range of research due to the available ultra-broad spectrum bands. In this chapter, we introduce the key technologies of mmWave communications based on pioneering researches. Channel measurement and modeling as a fundamental issue is presented in Sect. 2. Beam-tracking technique based on large-scale antenna array is studied in Sect. 3. Network architecture, particularly considering unified access and backhaul, is presented in Sect. 4. Current prototypes are introduced in Sect. 5. Finally we summarize the chapter in Sect. 6.

106 citations

Patent
Teng Shi1
26 Apr 2012
TL;DR: In this paper, a method, an apparatus, and a communication system for transmitting graphic information is described, where the graphic information carries a hyperlink and an identifier of the hyperlink, so that when the terminal receives the information, the terminal may judge, according to the identifier, whether the information has been processed.
Abstract: The present invention discloses a method, an apparatus, and a communication system for transmitting graphic information. In the technical solution of the present invention, the graphic information carries a hyperlink and an identifier of the hyperlink so that when the terminal receives the graphic information, the terminal may judge, according to the identifier of the hyperlink, whether the hyperlink has been processed, and the terminal requests the graphic from the network according to the hyperlink only when determining that the hyperlink has not been processed, therefore ensuring an effective decrease in bandwidth consumption of broadcast or multicast channels, effectively avoiding repeated processing and presentation of a same hyperlink by the terminal, and reducing the complexity of the processing of the terminal.

106 citations

Journal ArticleDOI
TL;DR: This work demonstrates a feasible route to suppress Li dendrite growth by designing appropriate film-forming additives to regulate the interfacial properties of the SEI layer, and also the sulfonyl-based derivatives revealed in this work represent a large variety of newFilm-forming molecules, providing a broad selectivity for constructing high efficiency and cycle-stable Li anodes to address the intrinsic problems of rechargeable Li-metal batteries.
Abstract: The growth and proliferation of Li dendrites during repeated Li cycling has long been a crucial issue that hinders the development of secondary Li-metal batteries. Building a stable and robust solid state electrolyte interphase (SEI) on the Li-anode surface is regarded as a promising strategy to overcome the dendrite issues. In this work, we report a simple strategy to engineer the interface chemistry of Li-metal anodes by using tiny amounts of dimethyl sulfate (DMS, C2H6SO4) as the SEI-forming additive. With the preferential reduction of DMS, an SEI layer composed of Li2S/Li2O forms on the Li surface. This inorganic SEI layer features high structural modulus and low interfacial resistant, enabling a dense and dendrite-free Li deposition as evidenced by scanning electron microscopy, atomic force microscopy, and in situ optical images. In addition, this SEI layer can prevent the deposited Li from direct contact with corrosive electrolytes, thus rendering an improved cycling stability of Li anodes with an a...

106 citations

Journal ArticleDOI
TL;DR: The existence of the solution to the optimal cell association problem is proved, the solution space is completely characterized, and the analytical and simulation results show that the proposed approach yields substantial improvements in terms of the average network delay.
Abstract: In this letter, a novel framework for delay-optimal cell association in unmanned aerial vehicle (UAV)-enabled wireless cellular networks is proposed. In particular, to minimize the average network delay under any arbitrary spatial distribution of the ground users, the optimal cell partitions of the UAVs and terrestrial base stations are determined. To this end, using the powerful mathematical tools of optimal transport theory, the existence of the solution to the optimal cell association problem is proved and the solution space is completely characterized. The analytical and simulation results show that the proposed approach yields substantial improvements in terms of the average network delay.

106 citations

Journal ArticleDOI
TL;DR: The densification and expansion of wireless networks pose new challenges on energy efficiency, and the ability to shut down infrastructure nodes or to adapt the transmission strategy according to the traffic will become an important design aspect of energy-efficient wirelessarchitectures.
Abstract: The densification and expansion of wireless networks pose new challenges on energy efficiency. With a drastic increase of infrastructure nodes (e.g. ultradense deployment of small cells), the total energy consumption may easily exceed an acceptable level. While most studies focus on the energy radiated by the antennas, the bigger part of the total energy budget is actually consumed by the hardware (e.g., coolers and circuit energy consumption). The ability to shut down infrastructure nodes (or parts of it) or to adapt the transmission strategy according to the traffic will therefore become an important design aspect of energy-efficient wireless ?architectures. Network infrastructure should be ?regarded as a resource that can be occupied or released on demand, and the modeling and optimization of such systems are highly nontrivial problems. In particular, elements of the network infrastructure should be released by taking into account traffic forecasts to avoid losing the required coverage and capacity. However, even if traffic profiles were perfectly known, the determination of the elements to be released is complicated by the potential interference coupling between active elements and the sheer size of the optimization problems in dense networks.

105 citations


Authors

Showing all 41483 results

NameH-indexPapersCitations
Yu Huang136149289209
Xiaoou Tang13255394555
Xiaogang Wang12845273740
Shaobin Wang12687252463
Qiang Yang112111771540
Wei Lu111197361911
Xuemin Shen106122144959
Li Chen105173255996
Lajos Hanzo101204054380
Luca Benini101145347862
Lei Liu98204151163
Tao Wang97272055280
Mohamed-Slim Alouini96178862290
Qi Tian96103041010
Merouane Debbah9665241140
Network Information
Related Institutions (5)
Alcatel-Lucent
53.3K papers, 1.4M citations

90% related

Bell Labs
59.8K papers, 3.1M citations

88% related

Hewlett-Packard
59.8K papers, 1.4M citations

87% related

Microsoft
86.9K papers, 4.1M citations

87% related

Intel
68.8K papers, 1.6M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202319
202266
20212,069
20203,277
20194,570
20184,476