scispace - formally typeset
Search or ask a question
Institution

Huawei

CompanyShenzhen, China
About: Huawei is a company organization based out in Shenzhen, China. It is known for research contribution in the topics: Terminal (electronics) & Signal. The organization has 41417 authors who have published 44698 publications receiving 343496 citations. The organization is also known as: Huawei Technologies & Huawei Technologies Co., Ltd..


Papers
More filters
Journal ArticleDOI
TL;DR: Key 5G enabling wireless mobile technologies are described and discussed, discussing their potentials and open research challenges and how papers published in the special issue contribute to the developments of these disruptive 5G technologies.
Abstract: Research on 5G mobile wireless technologies has been very active in both academia and industry in the past few years. While there has been certain consensus on the overall requirements of 5G wireless systems (e.g., in data rate, network capacity, delay), various enabling wireless technologies have been considered and studied to achieve these performance targets. It has been quite clear, however, that there would be no single enabling technology that can achieve all diverse and even conflicting 5G requirements. In general, many fundamental changes and innovations to re-engineer the overall network architecture and algorithms in different layers and to exploit new system degrees of freedom would be needed for the future 5G wireless system. In particular, we may need to consider other potential waveform candidates that can overcome limitations of the orthogonal frequency multiple access (OFDM) waveform employed in the current 4G system, develop disruptive technologies to fulfill 5G rate and capacity requirements including network densification, employment of large-scale (massive) multiple input multiple output (MIMO), and exploitation of the millimeter wave (mmWave) spectrum to attain Gigabit communications. In addition, design tools from the computer networking domain including software defined networking, virtualization, and cloud computing are expected to play important roles in defining the more flexible, intelligent, and efficient 5G network architecture. This paper aims at describing key 5G enabling wireless mobile technologies and discussing their potentials and open research challenges. We also present how papers published in our special issue contribute to the developments of these disruptive 5G technologies.

96 citations

Journal ArticleDOI
TL;DR: Simulation results demonstrate that the BA algorithms outperform a fixed-ADC approach in both spectral and energy efficiency, and validate the capacity and ergodic rate formula.
Abstract: In this paper, we propose a hybrid analog–digital beamforming architecture with resolution-adaptive ADCs for millimeter wave (mmWave) receivers with large antenna arrays. We adopt array response vectors for the analog combiners and derive ADC bit-allocation (BA) solutions in closed form. The BA solutions reveal that the optimal number of ADC bits is logarithmically proportional to the RF chain's signal-to-noise ratio raised to the $1/3$ power. Using the solutions, two proposed BA algorithms minimize the mean square quantization error of received analog signals under a total ADC power constraint. Contributions of this paper include 1) ADC bit-allocation algorithms to improve communication performance of a hybrid MIMO receiver, 2) approximation of the capacity with the BA algorithm as a function of channels, and 3) a worst-case analysis of the ergodic rate of the proposed MIMO receiver that quantifies system tradeoffs and serves as the lower bound. Simulation results demonstrate that the BA algorithms outperform a fixed-ADC approach in both spectral and energy efficiency, and validate the capacity and ergodic rate formula. For a power constraint equivalent to that of fixed 4-bit ADCs, the revised BA algorithm makes the quantization error negligible while achieving 22% better energy efficiency. Having negligible quantization error allows existing state-of-the-art digital beamformers to be readily applied to the proposed system.

95 citations

Journal ArticleDOI
TL;DR: A joint crosslayer and sensing design is proposed and its performance advantages over the aforementioned traditional decoupled approaches are studied.
Abstract: In most of the existing works on cognitive radio (CR) systems, the spectrum sensing and the cross-layer scheduling are designed separately. Specifically, the sensing module first determines whether or not a channel resource is available for the CR system based on the sensing information. The scheduling module then schedules the data transmission of different users on the available channels based on the hard-decision sensing information (HSI). In this paper, we shall propose a joint crosslayer and sensing design and study its performance advantages over the aforementioned traditional decoupled approaches. We shall consider the downlink transmission of an OFDMA-based secondary system sharing the spectrum with primary users using cognitive radio technology. We shall rely on the joint design framework to optimize a system utility, which adapts the power allocation and the subcarrier assignment across the secondary users (under a average interference constraint to the primary users) based on both the channel state information (CSI) and the raw sensing information (RSI). In addition, we shall also propose a distributed implementation for the cross-layer sensing and scheduling design using primal-dual decomposition approach. Simulation results reveals the substantial performance gain of the proposed joint design over the conventional CR systems.

95 citations

Proceedings ArticleDOI
26 Oct 2021
TL;DR: UltraGCN as discussed by the authors proposes an ultra-simplified formulation of GCNs, which skips infinite layers of message passing for efficient recommendation, instead of explicit message passing, resorting to directly approximate the limit of infinite-layer graph convolutions via a constraint loss.
Abstract: With the recent success of graph convolutional networks (GCNs), they have been widely applied for recommendation, and achieved impressive performance gains. The core of GCNs lies in its message passing mechanism to aggregate neighborhood information. However, we observed that message passing largely slows down the convergence of GCNs during training, especially for large-scale recommender systems, which hinders their wide adoption. LightGCN makes an early attempt to simplify GCNs for collaborative filtering by omitting feature transformations and nonlinear activations. In this paper, we take one step further to propose an ultra-simplified formulation of GCNs (dubbed UltraGCN), which skips infinite layers of message passing for efficient recommendation. Instead of explicit message passing, UltraGCN resorts to directly approximate the limit of infinite-layer graph convolutions via a constraint loss. Meanwhile, UltraGCN allows for more appropriate edge weight assignments and flexible adjustment of the relative importances among different types of relationships. This finally yields a simple yet effective UltraGCN model, which is easy to implement and efficient to train. Experimental results on four benchmark datasets show that UltraGCN not only outperforms the state-of-the-art GCN models but also achieves more than 10x speedup over LightGCN.

95 citations

Proceedings ArticleDOI
Wei Zhou1, Li Li1, Min Luo1, Wu Chou1
13 May 2014
TL;DR: A hypertext-driven approach is presented, so that hypertext links are defined between REST resources for the networking protocol to guide clients to identify the right resources rather than relying on fixed resource URIs.
Abstract: REST architectural style gains increasing popularity in the networking protocol design, and it has become a prevalent choice for northbound API of Software-Defined Networking (SDN). This paper addresses many critical issues in RESTful networking protocol design, and presents a framework on how a networking protocol can be designed in a truly RESTful manner, making it towards a service oriented data networking. In particular, we introduce the HTTP content negotiation mechanism which allows clients to select different representation formats from the same resource URI. Most importantly, we present a hypertext-driven approach, so that hypertext links are defined between REST resources for the networking protocol to guide clients to identify the right resources rather than relying on fixed resource URIs. The advantages of our approach are verified in two folds. First, we show how to apply our approach to fix REST design problems in some existing northbound networking APIs, and then we show how to design a RESTful northbound API of SDN in the context of OpenStack. We implemented our proposed approach in the northbound REST API of SOX, a generalized SDN controller, and the benefits of the proposed approach are experimentally verified.

95 citations


Authors

Showing all 41483 results

NameH-indexPapersCitations
Yu Huang136149289209
Xiaoou Tang13255394555
Xiaogang Wang12845273740
Shaobin Wang12687252463
Qiang Yang112111771540
Wei Lu111197361911
Xuemin Shen106122144959
Li Chen105173255996
Lajos Hanzo101204054380
Luca Benini101145347862
Lei Liu98204151163
Tao Wang97272055280
Mohamed-Slim Alouini96178862290
Qi Tian96103041010
Merouane Debbah9665241140
Network Information
Related Institutions (5)
Alcatel-Lucent
53.3K papers, 1.4M citations

90% related

Bell Labs
59.8K papers, 3.1M citations

88% related

Hewlett-Packard
59.8K papers, 1.4M citations

87% related

Microsoft
86.9K papers, 4.1M citations

87% related

Intel
68.8K papers, 1.6M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202319
202266
20212,069
20203,277
20194,570
20184,476