scispace - formally typeset
Search or ask a question
Institution

Huawei

CompanyShenzhen, China
About: Huawei is a company organization based out in Shenzhen, China. It is known for research contribution in the topics: Terminal (electronics) & Node (networking). The organization has 41417 authors who have published 44698 publications receiving 343496 citations. The organization is also known as: Huawei Technologies & Huawei Technologies Co., Ltd..


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a survey on the relationship between edge intelligence and intelligent edge computing is presented, and the practical implementation methods and enabling technologies, namely DL training and inference in the customized edge computing framework, challenges and future trends of more pervasive and fine-grained intelligence.
Abstract: Ubiquitous sensors and smart devices from factories and communities are generating massive amounts of data, and ever-increasing computing power is driving the core of computation and services from the cloud to the edge of the network. As an important enabler broadly changing people's lives, from face recognition to ambitious smart factories and cities, developments of artificial intelligence (especially deep learning, DL) based applications and services are thriving. However, due to efficiency and latency issues, the current cloud computing service architecture hinders the vision of "providing artificial intelligence for every person and every organization at everywhere". Thus, unleashing DL services using resources at the network edge near the data sources has emerged as a desirable solution. Therefore, edge intelligence, aiming to facilitate the deployment of DL services by edge computing, has received significant attention. In addition, DL, as the representative technique of artificial intelligence, can be integrated into edge computing frameworks to build intelligent edge for dynamic, adaptive edge maintenance and management. With regard to mutually beneficial edge intelligence and intelligent edge, this paper introduces and discusses: 1) the application scenarios of both; 2) the practical implementation methods and enabling technologies, namely DL training and inference in the customized edge computing framework; 3) challenges and future trends of more pervasive and fine-grained intelligence. We believe that by consolidating information scattered across the communication, networking, and DL areas, this survey can help readers to understand the connections between enabling technologies while promoting further discussions on the fusion of edge intelligence and intelligent edge, i.e., Edge DL.

518 citations

Journal ArticleDOI
TL;DR: This first comprehensive tutorial on the use of matching theory, a Nobel Prize winning framework, for resource management in wireless networks is developed and results show how matching theory can effectively improve the performance of resource allocation in all three applications discussed.
Abstract: The emergence of novel wireless networking paradigms such as small cell and cognitive radio networks has forever transformed the way in which wireless systems are operated. In particular, the need for self-organizing solutions to manage the scarce spectral resources has become a prevalent theme in many emerging wireless systems. In this article, the first comprehensive tutorial on the use of matching theory, a Nobel Prize winning framework, for resource management in wireless networks is developed. To cater for the unique features of emerging wireless networks, a novel, wireless-oriented classification of matching theory is proposed. Then the key solution concepts and algorithmic implementations of this framework are exposed. The developed concepts are applied in three important wireless networking areas in order to demonstrate the usefulness of this analytical tool. Results show how matching theory can effectively improve the performance of resource allocation in all three applications discussed.

515 citations

Journal ArticleDOI
TL;DR: This paper surveys the state-of-the-art in traffic engineering for SDNs, and mainly focuses on four thrusts including flow management, fault tolerance, topology update, and traffic analysis/characterization.

513 citations

Proceedings Article
25 Apr 2012
TL;DR: CoMb is presented, a new architecture for middlebox deployments that systematically explores opportunities for consolidation, both at the level of building individual middleboxes and in managing a network of middleboxes.
Abstract: Network deployments handle changing application, workload, and policy requirements via the deployment of specialized network appliances or "middleboxes". Today, however, middlebox platforms are expensive and closed systems, with little or no hooks for extensibility. Furthermore, they are acquired from independent vendors and deployed as standalone devices with little cohesiveness in how the ensemble of middleboxes is managed. As network requirements continue to grow in both scale and variety, this bottom-up approach puts middlebox deployments on a trajectory of growing device sprawl with corresponding escalation in capital and management costs. To address this challenge, we present CoMb, a new architecture for middlebox deployments that systematically explores opportunities for consolidation, both at the level of building individual middleboxes and in managing a network of middleboxes. This paper addresses key resource management and implementation challenges that arise in exploiting the benefits of consolidation in middlebox deployments. Using a prototype implementation in Click, we show that CoMb reduces the network provisioning cost 1.8-2.5× and reduces the load imbalance in a network by 2-25×.

508 citations

Posted Content
TL;DR: DeepFM as mentioned in this paper combines the power of factorization machines for recommendation and deep learning for feature learning in a new neural network architecture, which has a shared input to its "wide" and "deep" parts.
Abstract: Learning sophisticated feature interactions behind user behaviors is critical in maximizing CTR for recommender systems. Despite great progress, existing methods seem to have a strong bias towards low- or high-order interactions, or require expertise feature engineering. In this paper, we show that it is possible to derive an end-to-end learning model that emphasizes both low- and high-order feature interactions. The proposed model, DeepFM, combines the power of factorization machines for recommendation and deep learning for feature learning in a new neural network architecture. Compared to the latest Wide \& Deep model from Google, DeepFM has a shared input to its "wide" and "deep" parts, with no need of feature engineering besides raw features. Comprehensive experiments are conducted to demonstrate the effectiveness and efficiency of DeepFM over the existing models for CTR prediction, on both benchmark data and commercial data.

504 citations


Authors

Showing all 41483 results

NameH-indexPapersCitations
Yu Huang136149289209
Xiaoou Tang13255394555
Xiaogang Wang12845273740
Shaobin Wang12687252463
Qiang Yang112111771540
Wei Lu111197361911
Xuemin Shen106122144959
Li Chen105173255996
Lajos Hanzo101204054380
Luca Benini101145347862
Lei Liu98204151163
Tao Wang97272055280
Mohamed-Slim Alouini96178862290
Qi Tian96103041010
Merouane Debbah9665241140
Network Information
Related Institutions (5)
Alcatel-Lucent
53.3K papers, 1.4M citations

90% related

Bell Labs
59.8K papers, 3.1M citations

88% related

Hewlett-Packard
59.8K papers, 1.4M citations

87% related

Microsoft
86.9K papers, 4.1M citations

87% related

Intel
68.8K papers, 1.6M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202319
202266
20212,069
20203,277
20194,570
20184,476