scispace - formally typeset
Search or ask a question
Institution

Huawei

CompanyShenzhen, China
About: Huawei is a company organization based out in Shenzhen, China. It is known for research contribution in the topics: Terminal (electronics) & Signal. The organization has 41417 authors who have published 44698 publications receiving 343496 citations. The organization is also known as: Huawei Technologies & Huawei Technologies Co., Ltd..


Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes an efficient algorithm that is based on iteratively solving a sequence of group LASSO problems that performs BS clustering and beamformer design jointly rather than separately as is done in the existing approaches for partial coordinated transmission.
Abstract: We consider the interference management problem in a multicell MIMO heterogeneous network. Within each cell there is a large number of distributed micro/pico base stations (BSs) that can be potentially coordinated for joint transmission. To reduce coordination overhead, we consider user-centric BS clustering so that each user is served by only a small number of (potentially overlapping) BSs. Thus, given the channel state information, our objective is to jointly design the BS clustering and the linear beamformers for all BSs in the network. In this paper, we formulate this problem from a {sparse optimization} perspective, and propose an efficient algorithm that is based on iteratively solving a sequence of group LASSO problems. A novel feature of the proposed algorithm is that it performs BS clustering and beamformer design jointly rather than separately as is done in the existing approaches for partial coordinated transmission. Moreover, the cluster size can be controlled by adjusting a single penalty parameter in the nonsmooth regularized utility function. The convergence of the proposed algorithm (to a stationary solution) is guaranteed, and its effectiveness is demonstrated via extensive simulation.

309 citations

Posted Content
TL;DR: Partially-Connected Differentiable Architecture Search (PC-DARTS) as mentioned in this paper performs operation search in a subset of channels while bypassing the held out part in a shortcut, which alleviates the undesired inconsistency on selecting the edges of super-net caused by sampling different channels.
Abstract: Differentiable architecture search (DARTS) provided a fast solution in finding effective network architectures, but suffered from large memory and computing overheads in jointly training a super-network and searching for an optimal architecture. In this paper, we present a novel approach, namely, Partially-Connected DARTS, by sampling a small part of super-network to reduce the redundancy in exploring the network space, thereby performing a more efficient search without comprising the performance. In particular, we perform operation search in a subset of channels while bypassing the held out part in a shortcut. This strategy may suffer from an undesired inconsistency on selecting the edges of super-net caused by sampling different channels. We alleviate it using edge normalization, which adds a new set of edge-level parameters to reduce uncertainty in search. Thanks to the reduced memory cost, PC-DARTS can be trained with a larger batch size and, consequently, enjoys both faster speed and higher training stability. Experimental results demonstrate the effectiveness of the proposed method. Specifically, we achieve an error rate of 2.57% on CIFAR10 with merely 0.1 GPU-days for architecture search, and a state-of-the-art top-1 error rate of 24.2% on ImageNet (under the mobile setting) using 3.8 GPU-days for search. Our code has been made available at: this https URL.

306 citations

Journal ArticleDOI
TL;DR: In this article, a big-data-enabled architecture for proactive content caching in 5G wireless networks is investigated in which a vast amount of data is harnessed for content popularity estimation, and strategic contents are cached at BSs to achieve higher user satisfaction and backhaul offloading.
Abstract: In order to cope with the relentless data tsunami in 5G wireless networks, current approaches such as acquiring new spectrum, deploying more BSs, and increasing nodes in mobile packet core networks are becoming ineffective in terms of scalability, cost, and flexibility. In this regard, context- aware 5G networks with edge/cloud computing and exploitation of big data analytics can yield significant gains for mobile operators. In this article, proactive content caching in 5G wireless networks is investigated in which a big-data-enabled architecture is proposed. In this practical architecture, a vast amount of data is harnessed for content popularity estimation, and strategic contents are cached at BSs to achieve higher user satisfaction and backhaul offloading. To validate the proposed solution, we consider a real-world case study where several hours worth of mobile data traffic is collected from a major telecom operator in Turkey, and big-data-enabled analysis is carried out, leveraging tools from machine learning. Based on the available information and storage capacity, numerical studies show that several gains are achieved in terms of both user satisfaction and backhaul offloading. For example, in the case of 16 BSs with 30 percent of content ratings and 13 GB storage size (78 percent of total library size), proactive caching yields 100 percent user satisfaction and offloads 98 percent of the backhaul.

305 citations

Journal ArticleDOI
TL;DR: This survey provides a comprehensive review of cellular localization systems including recent results on 5G localization, and solutions based on wireless local area networks, highlighting those that are capable of computing 3D location in multi-floor indoor environments.
Abstract: Location information for events, assets, and individuals, mostly focusing on two dimensions so far, has triggered a multitude of applications across different verticals, such as consumer, networking, industrial, health care, public safety, and emergency response use cases. To fully exploit the potential of location awareness and enable new advanced location-based services, localization algorithms need to be combined with complementary technologies including accurate height estimation, i.e., three dimensional location, reliable user mobility classification, and efficient indoor mapping solutions. This survey provides a comprehensive review of such enabling technologies. In particular, we present cellular localization systems including recent results on 5G localization, and solutions based on wireless local area networks, highlighting those that are capable of computing 3D location in multi-floor indoor environments. We overview range-free localization schemes, which have been traditionally explored in wireless sensor networks and are nowadays gaining attention for several envisioned Internet of Things applications. We also present user mobility estimation techniques, particularly those applicable in cellular networks, that can improve localization and tracking accuracy. Regarding the mapping of physical space inside buildings for aiding tracking and navigation applications, we study recent advances and focus on smartphone-based indoor simultaneous localization and mapping approaches. The survey concludes with service availability and system scalability considerations, as well as security and privacy concerns in location architectures, discusses the technology roadmap, and identifies future research directions.

304 citations

Journal ArticleDOI
01 Dec 2014
TL;DR: A confidence-aware truth discovery (CATD) method to automatically detect truths from conflicting data with long-tail phenomenon is proposed, which outperforms existing state-of-the-art truth discovery approaches by successful discounting the effect of small sources.
Abstract: In many real world applications, the same item may be described by multiple sources. As a consequence, conflicts among these sources are inevitable, which leads to an important task: how to identify which piece of information is trustworthy, i.e., the truth discovery task. Intuitively, if the piece of information is from a reliable source, then it is more trustworthy, and the source that provides trustworthy information is more reliable. Based on this principle, truth discovery approaches have been proposed to infer source reliability degrees and the most trustworthy information (i.e., the truth) simultaneously. However, existing approaches overlook the ubiquitous long-tail phenomenon in the tasks, i.e., most sources only provide a few claims and only a few sources make plenty of claims, which causes the source reliability estimation for small sources to be unreasonable. To tackle this challenge, we propose a confidence-aware truth discovery (CATD) method to automatically detect truths from conflicting data with long-tail phenomenon. The proposed method not only estimates source reliability, but also considers the confidence interval of the estimation, so that it can effectively reflect real source reliability for sources with various levels of participation. Experiments on four real world tasks as well as simulated multi-source long-tail datasets demonstrate that the proposed method outperforms existing state-of-the-art truth discovery approaches by successful discounting the effect of small sources.

302 citations


Authors

Showing all 41483 results

NameH-indexPapersCitations
Yu Huang136149289209
Xiaoou Tang13255394555
Xiaogang Wang12845273740
Shaobin Wang12687252463
Qiang Yang112111771540
Wei Lu111197361911
Xuemin Shen106122144959
Li Chen105173255996
Lajos Hanzo101204054380
Luca Benini101145347862
Lei Liu98204151163
Tao Wang97272055280
Mohamed-Slim Alouini96178862290
Qi Tian96103041010
Merouane Debbah9665241140
Network Information
Related Institutions (5)
Alcatel-Lucent
53.3K papers, 1.4M citations

90% related

Bell Labs
59.8K papers, 3.1M citations

88% related

Hewlett-Packard
59.8K papers, 1.4M citations

87% related

Microsoft
86.9K papers, 4.1M citations

87% related

Intel
68.8K papers, 1.6M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202319
202266
20212,069
20203,277
20194,570
20184,476