scispace - formally typeset
Search or ask a question
Institution

Huawei

CompanyShenzhen, China
About: Huawei is a company organization based out in Shenzhen, China. It is known for research contribution in the topics: Terminal (electronics) & Node (networking). The organization has 41417 authors who have published 44698 publications receiving 343496 citations. The organization is also known as: Huawei Technologies & Huawei Technologies Co., Ltd..


Papers
More filters
Journal ArticleDOI
TL;DR: DSP techniques for channel aggregation and deaggregation, frequency-domain windowing, adjacent channel leak age ratio reduction, and synchronous transmission of both the I/Q waveforms of wireless signals and the control words (CWs) used for control and management purposes are presented.
Abstract: Mobile fronthaul is an important network segment that bridges wireless baseband units and remote radio units to support cloud radio access network. We review recent progresses on the use of frequency-division multiplexing to achieve highly bandwidth-efficient mobile fronthaul with low latency. We present digital signal processing (DSP) techniques for channel aggregation and deaggregation, frequency-domain windowing, adjacent channel leak age ratio reduction, and synchronous transmission of both the I/Q waveforms of wireless signals and the control words (CWs) used for control and management purposes. In a proof-of-concept experiment, we demonstrate the transmission of 48 20-MHz LTE signals with a common public radio interface (CPRI) equivalent data rate of 59 Gb/s, achieving a low round-trip DSP latency of <2 μs and a low mean error-vector magnitude (EVM) of ∼2.5% after fiber transmission. In a follow-up experiment, we further demonstrate the transmission of 32 20-MHz LTE signals together with CPRI-compliant CWs, corresponding to a CPRI-equivalent data rate of 39.32 Gb/s, in single optical wavelength channel that requires an RF bandwidth of only ∼1.6 GHz. After transmission over 5-km standard single-mode fiber, the CWs are recovered without error, while the LTE signals are recovered with an EVM of lower than 3%. Applying this technique to future 5G wireless networks with massive multiple-input multiple-output is also discussed. This efficient mobile fronthaul technique may find promising applications in future integrated fiber/wireless access networks to provide ultrabroadband access services.

163 citations

Journal ArticleDOI
13 Jun 2018
TL;DR: A survey of existing works for the mobile crowdsensing strategies with emphasis on reducing the resource cost and achieving high QoS, and provides the guidance on the future research direction of mobile crowdsense.
Abstract: Mobile crowdsensing serves as a critical building block for emerging Internet of Things (IoT) applications. However, the sensing devices continuously generate a large amount of data, which consumes much resources (e.g., bandwidth, energy, and storage) and may sacrifice the Quality-of-Service (QoS) of applications. Prior work has demonstrated that there is significant redundancy in the content of the sensed data. By judiciously reducing redundant data, data size and load can be significantly reduced, thereby reducing resource cost and facilitating the timely delivery of unique, probably critical information and enhancing QoS. This article presents a survey of existing works on mobile crowdsensing strategies with an emphasis on reducing resource cost and achieving high QoS. We start by introducing the motivation for this survey and present the necessary background of crowdsensing and IoT. We then present various mobile crowdsensing strategies and discuss their strengths and limitations. Finally, we discuss future research directions for mobile crowdsensing for IoT. The survey addresses a broad range of techniques, methods, models, systems, and applications related to mobile crowdsensing and IoT. Our goal is not only to analyze and compare the strategies proposed in prior works, but also to discuss their applicability toward the IoT and provide guidance on future research directions for mobile crowdsensing.

162 citations

Patent
Xinwen Zhang, Bin Zhao1, Asit Chakraborti1, Ravishankar Ravindran1, Guoqiang Wang1 
22 Apr 2013
TL;DR: In this article, a content router, comprising a plurality of physical links to other nodes in an information centric network, a receiver coupled to the plurality of PHY links configured to receive messages, a transmitter coupled to transmit messages, and a service publishing and discovery (SPD) module comprising a processor and memory device coupled to both the receiver and the transmitter, is configured to determine a next hop and a number of hops to forward a received message based on a prefix in a name-based service discovery protocol name of a message.
Abstract: A content router, comprising a plurality of physical links to other nodes in an information centric network, a receiver coupled to the plurality of physical links configured to receive messages, a transmitter coupled to the plurality of physical links configured to transmit messages, and a service publishing and discovery (SPD) module comprising a processor and memory device coupled to the receiver and to the transmitter, wherein the SPD is configured to store status updates of the physical links, wherein the SPD is configured to determine a next hop and a number of hops to forward a received message based on a prefix in a name-based service discovery protocol name of a received message.

162 citations

Journal ArticleDOI
TL;DR: The air interface landscape that is envisioned for 5G, and how this will likely be harmonized and integrated into an overall 5G RAN is depicted, in the form of concrete control and user plane design considerations and architectural enablers for network slicing, supporting independent business-driven logical networks on a common infrastructure.
Abstract: While there is clarity on the wide range of applications that are to be supported by 5G cellular communications, and standardization of 5G has now started in 3GPP, there is no conclusion yet on the detailed design of the overall 5G RAN. This article provides a comprehensive overview of the 5G RAN design guidelines, key design considerations, and functional innovations as identified and developed by key players in the field.1 It depicts the air interface landscape that is envisioned for 5G, and elaborates on how this will likely be harmonized and integrated into an overall 5G RAN, in the form of concrete control and user plane design considerations and architectural enablers for network slicing, supporting independent business-driven logical networks on a common infrastructure. The article also explains key functional design considerations for the 5G RAN, highlighting the difference to legacy systems such as LTE-A and the implications of the overall RAN design.

162 citations

Proceedings ArticleDOI
TL;DR: In this paper, a technique is developed to enable multi-user SCMA (MU-SCMA) for downlink wireless access, where user pairing, power sharing, rate adjustment, and scheduling algorithms are designed to improve the downlink throughput of a heavily loaded network.
Abstract: Sparse code multiple access (SCMA) is a new frequency domain non-orthogonal multiple-access technique which can improve spectral efficiency of wireless radio access. With SCMA, different incoming data streams are directly mapped to codewords of different multi-dimensional cookbooks, where each codeword represents a spread transmission layer. Multiple SCMA layers share the same time-frequency resources of OFDMA. The sparsity of codewords makes the near-optimal detection feasible through iterative message passing algorithm (MPA). Such low complexity of multi-layer detection allows excessive codeword overloading in which the dimension of multiplexed layers exceeds the dimension of codewords. Optimization of overloading factor along with modulation-coding levels of layers provides a more flexible and efficient link-adaptation mechanism. On the other hand, the signal spreading feature of SCMA can improve link-adaptation as a result of less colored interference. In this paper a technique is developed to enable multi-user SCMA (MU-SCMA) for downlink wireless access. User pairing, power sharing, rate adjustment, and scheduling algorithms are designed to improve the downlink throughput of a heavily loaded network. The advantage of SCMA spreading for lightly loaded networks is also evaluated.

161 citations


Authors

Showing all 41483 results

NameH-indexPapersCitations
Yu Huang136149289209
Xiaoou Tang13255394555
Xiaogang Wang12845273740
Shaobin Wang12687252463
Qiang Yang112111771540
Wei Lu111197361911
Xuemin Shen106122144959
Li Chen105173255996
Lajos Hanzo101204054380
Luca Benini101145347862
Lei Liu98204151163
Tao Wang97272055280
Mohamed-Slim Alouini96178862290
Qi Tian96103041010
Merouane Debbah9665241140
Network Information
Related Institutions (5)
Alcatel-Lucent
53.3K papers, 1.4M citations

90% related

Bell Labs
59.8K papers, 3.1M citations

88% related

Hewlett-Packard
59.8K papers, 1.4M citations

87% related

Microsoft
86.9K papers, 4.1M citations

87% related

Intel
68.8K papers, 1.6M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202319
202266
20212,069
20203,277
20194,570
20184,476