scispace - formally typeset
Search or ask a question
Institution

Hubei University

EducationWuhan, China
About: Hubei University is a education organization based out in Wuhan, China. It is known for research contribution in the topics: Catalysis & Graphene. The organization has 16370 authors who have published 14590 publications receiving 201648 citations. The organization is also known as: Hubei University, HUBU & Húběi Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: The clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia who were admitted to the intensive care unit (ICU) of Wuhan Jin Yin-tan hospital between late December, 2019 and Jan 26, 2020 are described.

7,787 citations

Journal ArticleDOI
TL;DR: It is expected that special wettability stimulated oil/water separation materials can achieve industrial scale production and be put into use for oil spills and industrial oily wastewater treatment in the near future.
Abstract: Oil spills and industrial organic pollutants have induced severe water pollution and threatened every species in the ecological system. To deal with oily water, special wettability stimulated materials have been developed over the past decade to separate oil-and-water mixtures. Basically, synergy between the surface chemical composition and surface topography are commonly known as the key factors to realize the opposite wettability to oils and water and dominate the selective wetting or absorption of oils/water. In this review, we mainly focus on the development of materials with either super-lyophobicity or super-lyophilicity properties in oil/water separation applications where they can be classified into four kinds as follows (in terms of the surface wettability of water and oils): (i) superhydrophobic and superoleophilic materials, (ii) superhydrophilic and under water superoleophobic materials, (iii) superhydrophilic and superoleophobic materials, and (iv) smart oil/water separation materials with switchable wettability. These materials have already been applied to the separation of oil-and-water mixtures: from simple oil/water layered mixtures to oil/water emulsions (including oil-in-water emulsions and water-in-oil emulsions), and from non-intelligent materials to intelligent materials. Moreover, they also exhibit high absorption capacity or separation efficiency and selectivity, simple and fast separation/absorption ability, excellent recyclability, economical efficiency and outstanding durability under harsh conditions. Then, related theories are proposed to understand the physical mechanisms that occur during the oil/water separation process. Finally, some challenges and promising breakthroughs in this field are also discussed. It is expected that special wettability stimulated oil/water separation materials can achieve industrial scale production and be put into use for oil spills and industrial oily wastewater treatment in the near future.

1,261 citations

Journal ArticleDOI
TL;DR: An overview of the design of ideal biomimetic porous scaffolds for bone tissue engineering is presented, and concepts and techniques including the production of a hierarchical structure on both the macro- and nano-scales, the adjustment of biomechanical properties through structural alignment and chemical components, and the control of the biodegradability of the scaffold and its by-products are discussed.
Abstract: Increased use of reconstruction procedures in orthopedics, due to trauma, tumor, deformity, degeneration and an aging population, has caused a blossom, not only in surgical advancement, but also in the development of bone implants. Traditional synthetic porous scaffolds are made of metals, polymers, ceramics or even composite biomaterials, in which the design does not consider the native structure and properties of cells and natural tissues. Thus, these synthetic scaffolds often poorly integrate with the cells and surrounding host tissue, thereby resulting in unsatisfactory surgical outcomes due to poor corrosion and wear, mechanical mismatch, unamiable surface environment, and other unfavorable properties. Musculoskeletal tissue reconstruction is the ultimate objective in orthopedic surgery. This objective can be achieved by (i) prosthesis or fixation device implantation, and (ii) tissue engineered bone scaffolds. These devices focus on the design of implants, regardless of the choice of new biomaterials. Indeed, metallic materials, e.g. 316L stainless steel, titanium alloys and cobalt chromium alloys, are predominantly used in bone surgeries, especially in the load-bearing zone of prostheses. The engineered scaffolds take biodegradability, cell biology, biomolecules and material mechanical properties into account, in which these features are ideally suited for bone tissue repair and regeneration. Therefore, the design of the scaffold is extremely important to the success of clinical outcomes in musculoskeletal surgeries. The ideal scaffolds should mimic the natural extracellular matrix (ECM) as much as possible, since the ECM found in natural tissues supports cell attachment, proliferation, and differentiation, indicating that scaffolds should consist of appropriate biochemistry and nano/micro-scale surface topographies, in order to formulate favorable binding sites to actively regulate and control cell and tissue behavior, while interacting with host cells. In addition, scaffolds should also possess a similar macro structure to what is found in natural bone. This feature may provide space for the growth of cells and new tissues, as well as for the carriers of growth factors. Another important concern is the mechanical properties of scaffolds. It has been reported that the mechanical features can significantly influence the osteointegration between implants and surrounding tissues, as well as cell behaviors. Since natural bone exhibits super-elastic biomechanical properties with a Young's modulus value in the range of 1–27 GPa, the ideal scaffolds should mimic strength, stiffness and mechanical behavior, so as to avoid possible post-operation stress shielding effects, which induce bone resorption and consequent implant failure. In addition, the rate of degradation and the by-products of biodegradable materials are also critical in the role of bone regeneration. Indeed, the mechanical integrity of a scaffold will be significantly reduced if the degradation rate is rapid, thereby resulting in a pre-matured collapse of the scaffold before the tissue is regenerated. Another concern is that the by-products upon degradation may alter the tissue microenvironment and then challenge the biocompatibility of the scaffold and the subsequent tissue repair. Therefore, these two factors should be carefully considered when designing new biomaterials for tissue regeneration. To address the aforementioned questions, an overview of the design of ideal biomimetic porous scaffolds is presented in this paper. Hence, a number of original engineering processes and techniques, including the production of a hierarchical structure on both the macro- and nano-scales, the adjustment of biomechanical properties through structural alignment and chemical components, the control of the biodegradability of the scaffold and its by-products, the change of biomimetic surface properties by altering interfacial chemistry, and micro- and nano-topographies will be discussed. In general, the concepts and techniques mentioned above provide insights into designing superior biomimetic scaffolds for bone tissue engineering.

786 citations

Journal ArticleDOI
TL;DR: In this paper, a novel method based on ionic gelation using sodium tripolyphosphate (TPP) as cross-linking agent was used to obtain monodisperse, low molecular weight (LMW) chitosan nanoparticles.

656 citations


Authors

Showing all 16428 results

NameH-indexPapersCitations
Yu Huang136149289209
Zhen Li127171271351
Li Chen105173255996
Wei Chen103143844994
Ming Li103166962672
Qi Li102156346762
Wei Liu102292765228
Wei Zhang96140443392
Zaiping Guo9551632390
Dapeng Yu9474533613
Zhongwei Chen9251133700
Ralph Bock8932425314
Hao Wang89159943904
Feng Ding8548520354
Wei Tang8467127175
Network Information
Related Institutions (5)
Wuhan University
92.8K papers, 1.6M citations

91% related

Jilin University
88.9K papers, 1.4M citations

89% related

Nanjing University
105.5K papers, 2.2M citations

89% related

South China University of Technology
69.4K papers, 1.2M citations

89% related

Huazhong University of Science and Technology
122.5K papers, 2.1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202335
2022132
20212,087
20201,864
20191,606
20181,276