scispace - formally typeset
Search or ask a question

Showing papers by "Humboldt University of Berlin published in 2019"


Journal ArticleDOI
TL;DR: To develop new classification criteria for systemic lupus erythematosus (SLE) jointly supported by the European League Against Rheumatism and the American College of Rheumatology (ACR).
Abstract: Objective To develop new classification criteria for systemic lupus erythematosus (SLE) jointly supported by the European League Against Rheumatism (EULAR) and the American College of Rheumatology (ACR). Methods This international initiative had four phases. 1) Evaluation of antinuclear antibody (ANA) as an entry criterion through systematic review and meta-regression of the literature and criteria generation through an international Delphi exercise, an early patient cohort, and a patient survey. 2) Criteria reduction by Delphi and nominal group technique exercises. 3) Criteria definition and weighting based on criterion performance and on results of a multi-criteria decision analysis. 4) Refinement of weights and threshold scores in a new derivation cohort of 1,001 subjects and validation compared with previous criteria in a new validation cohort of 1,270 subjects. Results The 2019 EULAR/ACR classification criteria for SLE include positive ANA at least once as obligatory entry criterion; followed by additive weighted criteria grouped in 7 clinical (constitutional, hematologic, neuropsychiatric, mucocutaneous, serosal, musculoskeletal, renal) and 3 immunologic (antiphospholipid antibodies, complement proteins, SLE-specific antibodies) domains, and weighted from 2 to 10. Patients accumulating ≥10 points are classified. In the validation cohort, the new criteria had a sensitivity of 96.1% and specificity of 93.4%, compared with 82.8% sensitivity and 93.4% specificity of the ACR 1997 and 96.7% sensitivity and 83.7% specificity of the Systemic Lupus International Collaborating Clinics 2012 criteria. Conclusion These new classification criteria were developed using rigorous methodology with multidisciplinary and international input, and have excellent sensitivity and specificity. Use of ANA entry criterion, hierarchically clustered, and weighted criteria reflects current thinking about SLE and provides an improved foundation for SLE research.

1,018 citations


Journal ArticleDOI
Eric C. Bellm1, Shrinivas R. Kulkarni2, Matthew J. Graham2, Richard Dekany2, Roger M. H. Smith2, Reed Riddle2, Frank J. Masci2, George Helou2, Thomas A. Prince2, Scott M. Adams2, Cristina Barbarino3, Tom A. Barlow2, James Bauer4, Ron Beck2, Justin Belicki2, Rahul Biswas3, Nadejda Blagorodnova2, Dennis Bodewits4, Bryce Bolin1, V. Brinnel5, Tim Brooke2, Brian D. Bue2, Mattia Bulla3, Rick Burruss2, S. Bradley Cenko4, S. Bradley Cenko6, Chan-Kao Chang7, Andrew J. Connolly1, Michael W. Coughlin2, John Cromer2, Virginia Cunningham4, Kaushik De2, Alex Delacroix2, Vandana Desai2, Dmitry A. Duev2, Gwendolyn Eadie1, Tony L. Farnham4, Michael Feeney2, Ulrich Feindt3, David Flynn2, Anna Franckowiak, Sara Frederick4, Christoffer Fremling2, Avishay Gal-Yam8, Suvi Gezari4, Matteo Giomi5, Daniel A. Goldstein2, V. Zach Golkhou1, Ariel Goobar3, Steven Groom2, Eugean Hacopians2, David Hale2, John Henning2, Anna Y. Q. Ho2, David Hover2, Justin Howell2, Tiara Hung4, Daniela Huppenkothen1, David Imel2, Wing-Huen Ip7, Wing-Huen Ip9, Željko Ivezić1, Edward Jackson2, Lynne Jones1, Mario Juric1, Mansi M. Kasliwal2, Shai Kaspi10, Stephen Kaye2, Michael S. P. Kelley4, Marek Kowalski5, Emily Kramer2, Thomas Kupfer2, Thomas Kupfer11, Walter Landry2, Russ R. Laher2, Chien De Lee7, Hsing Wen Lin12, Hsing Wen Lin7, Zhong-Yi Lin7, Ragnhild Lunnan3, Ashish Mahabal2, Peter H. Mao2, Adam A. Miller13, Adam A. Miller14, Serge Monkewitz2, Patrick J. Murphy2, Chow-Choong Ngeow7, Jakob Nordin5, Peter Nugent15, Peter Nugent16, Eran O. Ofek8, Maria T. Patterson1, Bryan E. Penprase17, Michael Porter2, L. Rauch, Umaa Rebbapragada2, Daniel J. Reiley2, Mickael Rigault18, Hector P. Rodriguez2, Jan van Roestel19, Ben Rusholme2, J. V. Santen, Steve Schulze8, David L. Shupe2, Leo Singer6, Leo Singer4, Maayane T. Soumagnac8, Robert Stein, Jason Surace2, Jesper Sollerman3, Paula Szkody1, Francesco Taddia3, Scott Terek2, Angela Van Sistine20, Sjoert van Velzen4, W. Thomas Vestrand21, Richard Walters2, Charlotte Ward4, Quanzhi Ye2, Po-Chieh Yu7, Lin Yan2, Jeffry Zolkower2 
TL;DR: The Zwicky Transient Facility (ZTF) as mentioned in this paper is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope, which provides a 47 deg^2 field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey.
Abstract: The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg^2 field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF's public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope.

1,009 citations


Journal ArticleDOI
07 Nov 2019-Nature
TL;DR: The capture and use of carbon dioxide to create valuable products might lower the net costs of reducing emissions or removing carbon dioxide from the atmosphere, but barriers to implementation remain substantial and resource constraints prevent the simultaneous deployment of all pathways.
Abstract: The capture and use of carbon dioxide to create valuable products might lower the net costs of reducing emissions or removing carbon dioxide from the atmosphere. Here we review ten pathways for the utilization of carbon dioxide. Pathways that involve chemicals, fuels and microalgae might reduce emissions of carbon dioxide but have limited potential for its removal, whereas pathways that involve construction materials can both utilize and remove carbon dioxide. Land-based pathways can increase agricultural output and remove carbon dioxide. Our assessment suggests that each pathway could scale to over 0.5 gigatonnes of carbon dioxide utilization annually. However, barriers to implementation remain substantial and resource constraints prevent the simultaneous deployment of all pathways. Ten pathways for the utilization of carbon dioxide are reviewed, considering their potential scale, economics and barriers to implementation.

879 citations


Journal ArticleDOI
TL;DR: The findings reported here imply that the pervasive microplastic contamination in soil may have consequences for plant performance and thus for agroecosystems and terrestrial biodiversity.
Abstract: Microplastics can affect biophysical properties of the soil. However, little is known about the cascade of events in fundamental levels of terrestrial ecosystems, i.e., starting with the changes in soil abiotic properties and propagating across the various components of soil-plant interactions, including soil microbial communities and plant traits. We investigated here the effects of six different microplastics (polyester fibers, polyamide beads, and four fragment types: polyethylene, polyester terephthalate, polypropylene, and polystyrene) on a broad suite of proxies for soil health and performance of spring onion ( Allium fistulosum). Significant changes were observed in plant biomass, tissue elemental composition, root traits, and soil microbial activities. These plant and soil responses to microplastic exposure were used to propose a causal model for the mechanism of the effects. Impacts were dependent on particle type, i.e., microplastics with a shape similar to other natural soil particles elicited smaller differences from control. Changes in soil structure and water dynamics may explain the observed results in which polyester fibers and polyamide beads triggered the most pronounced impacts on plant traits and function. The findings reported here imply that the pervasive microplastic contamination in soil may have consequences for plant performance and thus for agroecosystems and terrestrial biodiversity.

785 citations


Journal ArticleDOI
Andrea Cossarizza1, Hyun-Dong Chang, Andreas Radbruch, Andreas Acs2  +459 moreInstitutions (160)
TL;DR: These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community providing the theory and key practical aspects offlow cytometry enabling immunologists to avoid the common errors that often undermine immunological data.
Abstract: These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.

698 citations


Journal ArticleDOI
TL;DR: These new classification criteria for systemic lupus erythematosus have excellent sensitivity and specificity, and were developed using rigorous methodology with multidisciplinary and international input.
Abstract: Objective To develop new classification criteria for systemic lupus erythematosus (SLE) jointly supported by the European League Against Rheumatism (EULAR) and the American College of Rheumatology (ACR). Methods This international initiative had four phases. (1) Evaluation of antinuclear antibody (ANA) as an entry criterion through systematic review and meta-regression of the literature and criteria generation through an international Delphi exercise, an early patient cohort and a patient survey. (2) Criteria reduction by Delphi and nominal group technique exercises. (3) Criteria definition and weighting based on criterion performance and on results of a multi-criteria decision analysis. (4) Refinement of weights and threshold scores in a new derivation cohort of 1001 subjects and validation compared with previous criteria in a new validation cohort of 1270 subjects. Results The 2019 EULAR/ACR classification criteria for SLE include positive ANA at least once as obligatory entry criterion; followed by additive weighted criteria grouped in seven clinical (constitutional, haematological, neuropsychiatric, mucocutaneous, serosal, musculoskeletal, renal) and three immunological (antiphospholipid antibodies, complement proteins, SLE-specific antibodies) domains, and weighted from 2 to 10. Patients accumulating ≥10 points are classified. In the validation cohort, the new criteria had a sensitivity of 96.1% and specificity of 93.4%, compared with 82.8% sensitivity and 93.4% specificity of the ACR 1997 and 96.7% sensitivity and 83.7% specificity of the Systemic Lupus International Collaborating Clinics 2012 criteria. Conclusion These new classification criteria were developed using rigorous methodology with multidisciplinary and international input, and have excellent sensitivity and specificity. Use of ANA entry criterion, hierarchically clustered and weighted criteria reflect current thinking about SLE and provide an improved foundation for SLE research.

606 citations


Journal ArticleDOI
TL;DR: The HPO’s interoperability with other ontologies has enabled it to be used to improve diagnostic accuracy by incorporating model organism data and plays a key role in the popular Exomiser tool, which identifies potential disease-causing variants from whole-exome or whole-genome sequencing data.
Abstract: The Human Phenotype Ontology (HPO)-a standardized vocabulary of phenotypic abnormalities associated with 7000+ diseases-is used by thousands of researchers, clinicians, informaticians and electronic health record systems around the world. Its detailed descriptions of clinical abnormalities and computable disease definitions have made HPO the de facto standard for deep phenotyping in the field of rare disease. The HPO's interoperability with other ontologies has enabled it to be used to improve diagnostic accuracy by incorporating model organism data. It also plays a key role in the popular Exomiser tool, which identifies potential disease-causing variants from whole-exome or whole-genome sequencing data. Since the HPO was first introduced in 2008, its users have become both more numerous and more diverse. To meet these emerging needs, the project has added new content, language translations, mappings and computational tooling, as well as integrations with external community data. The HPO continues to collaborate with clinical adopters to improve specific areas of the ontology and extend standardized disease descriptions. The newly redesigned HPO website (www.human-phenotype-ontology.org) simplifies browsing terms and exploring clinical features, diseases, and human genes.

532 citations


Journal ArticleDOI
TL;DR: The programmatic developments and institutional context for the Landsat program and the unique ability of Landsat to meet the needs of national and international programs are described and the key trends in Landsat science are presented.

524 citations


Journal ArticleDOI
TL;DR: In this paper, a wide range of commonly used CTLs, including various hole-transporting polymers, spiro-OMeTAD, metal oxides and fullerenes, were studied.
Abstract: Charge transport layers (CTLs) are key components of diffusion controlled perovskite solar cells, however, they can induce additional non-radiative recombination pathways which limit the open circuit voltage (VOC) of the cell. In order to realize the full thermodynamic potential of the perovskite absorber, both the electron and hole transport layer (ETL/HTL) need to be as selective as possible. By measuring the photoluminescence yield of perovskite/CTL heterojunctions, we quantify the non-radiative interfacial recombination currents in pin- and nip-type cells including high efficiency devices (21.4%). Our study comprises a wide range of commonly used CTLs, including various hole-transporting polymers, spiro-OMeTAD, metal oxides and fullerenes. We find that all studied CTLs limit the VOC by inducing an additional non-radiative recombination current that is in most cases substantially larger than the loss in the neat perovskite and that the least-selective interface sets the upper limit for the VOC of the device. Importantly, the VOC equals the internal quasi-Fermi level splitting (QFLS) in the absorber layer only in high efficiency cells, while in poor performing devices, the VOC is substantially lower than the QFLS. Using ultraviolet photoelectron spectroscopy and differential charging capacitance experiments we show that this is due to an energy level mis-alignment at the p-interface. The findings are corroborated by rigorous device simulations which outline important considerations to maximize the VOC. This work highlights that the challenge to suppress non-radiative recombination losses in perovskite cells on their way to the radiative limit lies in proper energy level alignment and in suppression of defect recombination at the interfaces.

457 citations


Journal ArticleDOI
M. Aker1, K. Altenmüller, Matthias Arenz2, M. Babutzka1  +205 moreInstitutions (16)
TL;DR: An upper limit of 1.1 eV (90% confidence level) is derived on the absolute mass scale of neutrinos on the Karlsruhe Tritium Neutrino experiment KATRIN, which improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation.
Abstract: We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (-1.0_{-1.1}^{+0.9}) eV^{2}. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation.

452 citations


Journal ArticleDOI
TL;DR: The data suggest that lifestyle modifications leading to augmented SCFA production could be a beneficial nonpharmacological preventive strategy for patients with hypertensive cardiovascular disease and emphasize an immune-modulatory role of SCFAs and their importance for cardiovascular health.
Abstract: Background: Arterial hypertension and its organ sequelae show characteristics of T cell–mediated inflammatory diseases. Experimental anti-inflammatory therapies have been shown to ameliorate hypert...

Journal ArticleDOI
TL;DR: The interlink of the physiological understanding of tolerance processes from molecular processes as well as the agronomical techniques for stabilizing growth and yield and their interlinks might help improving the authors' crops for future demand and will provide improvement for cultivating crops in saline environment.
Abstract: Thirty crop species provide 90% of our food, most of which display severe yield losses under moderate salinity. Securing and augmenting agricultural yield in times of global warming and population increase is urgent and should, aside from ameliorating saline soils, include attempts to increase crop plant salt tolerance. This short review provides an overview of the processes that limit growth and yield in saline conditions. Yield is reduced if soil salinity surpasses crop-specific thresholds, with cotton, barley and sugar beet being highly tolerant, while sweet potato, wheat and maize display high sensitivity. Apart from Na+ , also Cl- , Mg2+ , SO4 2- or HCO3 - contribute to salt toxicity. The inhibition of biochemical or physiological processes cause imbalance in metabolism and cell signalling and enhance the production of reactive oxygen species interfering with cell redox and energy state. Plant development and root patterning is disturbed, and this response depends on redox and reactive oxygen species signalling, calcium and plant hormones. The interlink of the physiological understanding of tolerance processes from molecular processes as well as the agronomical techniques for stabilizing growth and yield and their interlinks might help improving our crops for future demand and will provide improvement for cultivating crops in saline environment.

Journal ArticleDOI
TL;DR: An in-depth review of existing approaches of time series networks, covering their methodological foundations, interpretation and practical considerations with an emphasis on recent developments, and emphasizes which fundamental new insights complex network approaches bring into the field of nonlinear time series analysis.

Journal ArticleDOI
TL;DR: Lee and Schmitt discuss how the classical view of senescence as a static, terminally differentiated state has changed to that of a dynamic, reversible condition with diverse roles in tumour biology.
Abstract: Cellular senescence is implicated in physiological and pathological processes spanning development, wound healing, age-related decline in organ functions and cancer. Here, we discuss cell-autonomous and non-cell-autonomous properties of senescence in the context of tumour formation and anticancer therapy, and characterize these properties, such as reprogramming into stemness, tissue remodelling and immune crosstalk, as far more dynamic than suggested by the common view of senescence as an irreversible, static condition.

Journal ArticleDOI
27 Jun 2019-Cell
TL;DR: This work analyzes the translatomes of 80 human hearts to identify new translation events and quantify the effect of translational regulation, and shows extensive translational control of cardiac gene expression, which is orchestrated in a process-specific manner.


Journal ArticleDOI
TL;DR: Among patients with stable angina and risk factors for coronary artery disease, myocardial-perfusion cardiovascular MRI was associated with a lower incidence of coronary revascularization than FFR and was noninferior to FFR with respect to major adverse cardiac events.
Abstract: Background In patients with stable angina, two strategies are often used to guide revascularization: one involves myocardial-perfusion cardiovascular magnetic resonance imaging (MRI), and ...

Journal ArticleDOI
TL;DR: In this article, the electronic properties of Ti3C2Tx for different surface terminations, as achieved by different annealing temperatures, with the help of photoelectron spectroscopy, inverse photo-electron, and density functional theory calculations, were investigated.
Abstract: MXenes, an emerging family of 2D transition metal carbides and nitrides, have shown promise in various applications, such as energy storage, electromagnetic interference shielding, conductive thin films, photonics, and photothermal therapy. Their metallic nature, wide range of optical absorption, and tunable surface chemistry are the key to their success in those applications. The physical properties of MXenes are known to be strongly dependent on their surface terminations. In this study, we investigated the electronic properties of Ti3C2Tx for different surface terminations, as achieved by different annealing temperatures, with the help of photoelectron spectroscopy, inverse photoelectron spectroscopy, and density functional theory calculations. We find that fluorine occupies solely the face-centered cubic adsorption site, whereas oxygen initially occupies at least two different adsorption sites, followed by a rearrangement after fluorine desorption at high annealing temperatures. The measured electroni...

Journal ArticleDOI
Matthew J. Graham1, Shrinivas R. Kulkarni1, Eric C. Bellm2, Scott M. Adams1, Cristina Barbarino3, Nadejda Blagorodnova1, Dennis Bodewits4, Dennis Bodewits5, Bryce Bolin2, Patrick Brady6, S. Bradley Cenko7, S. Bradley Cenko4, Chan-Kao Chang8, Michael W. Coughlin1, Kaushik De1, Gwendolyn Eadie2, Tony L. Farnham4, Ulrich Feindt3, Anna Franckowiak, Christoffer Fremling1, Suvi Gezari4, Suvi Gezari7, Sourav Ghosh6, Daniel A. Goldstein1, V. Zach Golkhou2, Ariel Goobar3, Anna Y. Q. Ho1, Daniela Huppenkothen2, Željko Ivezić2, R. Lynne Jones2, Mario Juric2, David L. Kaplan6, Mansi M. Kasliwal1, Michael S. P. Kelley4, Thomas Kupfer9, Thomas Kupfer1, Chien De Lee8, Hsing Wen Lin8, Hsing Wen Lin10, Ragnhild Lunnan3, Ashish Mahabal1, Adam A. Miller11, Adam A. Miller12, Chow-Choong Ngeow8, Peter Nugent13, Peter Nugent14, Eran O. Ofek15, Thomas A. Prince1, L. Rauch, Jan van Roestel16, Steve Schulze15, Leo Singer4, Leo Singer7, Jesper Sollerman3, Francesco Taddia3, Lin Yan1, Quanzhi Ye1, Po-Chieh Yu8, Tom A. Barlow1, James Bauer4, Ron Beck1, Justin Belicki1, Rahul Biswas3, V. Brinnel17, Tim Brooke1, Brian D. Bue1, Mattia Bulla3, Rick Burruss1, Andrew J. Connolly2, John Cromer1, Virginia Cunningham4, Richard Dekany1, Alex Delacroix1, Vandana Desai1, Dmitry A. Duev1, Michael Feeney1, David Flynn1, Sara Frederick4, Avishay Gal-Yam15, Matteo Giomi17, Steven Groom1, Eugean Hacopians1, David Hale1, George Helou1, John Henning1, David Hover1, Lynne A. Hillenbrand1, Justin Howell1, Tiara Hung4, David Imel1, Wing-Huen Ip8, Wing-Huen Ip18, Edward Jackson1, Shai Kaspi19, Stephen Kaye1, Marek Kowalski17, E. A. Kramer1, Michael A. Kuhn1, Walter Landry1, Russ R. Laher1, Peter H. Mao1, Frank J. Masci1, Serge Monkewitz1, Patrick J. Murphy1, Jakob Nordin17, Maria T. Patterson2, Bryan E. Penprase20, Michael Porter1, Umaa Rebbapragada1, Daniel J. Reiley1, Reed Riddle1, Mickael Rigault21, Hector Rodriguez1, Ben Rusholme1, J. V. Santen, David L. Shupe1, Roger M. H. Smith1, Maayane T. Soumagnac15, Robert Stein, Jason Surace1, Paula Szkody2, Scott Terek1, Angela Van Sistine6, Sjoert van Velzen4, W. Thomas Vestrand22, Richard Walters1, Charlotte Ward4, Chaoran Zhang6, Jeffry Zolkower1 
TL;DR: The Zwicky Transient Facility (ZTF) as mentioned in this paper is a new time-domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg^2 field of view and an 8 second readout time.
Abstract: The Zwicky Transient Facility (ZTF), a public–private enterprise, is a new time-domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg^2 field of view and an 8 second readout time. It is well positioned in the development of time-domain astronomy, offering operations at 10% of the scale and style of the Large Synoptic Survey Telescope (LSST) with a single 1-m class survey telescope. The public surveys will cover the observable northern sky every three nights in g and r filters and the visible Galactic plane every night in g and r. Alerts generated by these surveys are sent in real time to brokers. A consortium of universities that provided funding ("partnership") are undertaking several boutique surveys. The combination of these surveys producing one million alerts per night allows for exploration of transient and variable astrophysical phenomena brighter than r ~ 20.5 on timescales of minutes to years. We describe the primary science objectives driving ZTF, including the physics of supernovae and relativistic explosions, multi-messenger astrophysics, supernova cosmology, active galactic nuclei, and tidal disruption events, stellar variability, and solar system objects.


Journal ArticleDOI
TL;DR: In this article, a compositing approach is optimized for narrow temporal-intervals and allows the derivation of time-series of consistent reflectance composites that capture field level phenologies.

Journal ArticleDOI
29 Jul 2019
TL;DR: Using diagnostic methods for biofilm detection such as sonication, the sensitivity for diagnosing PJI is increasing, especially in chronic infections caused by low-virulence pathogens, which enables eradication of micro-organisms in the presence of a foreign body.
Abstract: Periprosthetic joint infection (PJI) is a serious complication occurring in 1% to 2% of primary arthroplasties, which is associated with high morbidity and need for complex interdisciplinary treatment strategies.The challenge in the management of PJI is the persistence of micro-organisms on the implant surface in the form of biofilm. Understanding this ability, the phases of biofilm formation, antimicrobial susceptibility and the limitations of host local immune response allows an individual choice of the most suitable treatment.By using diagnostic methods for biofilm detection such as sonication, the sensitivity for diagnosing PJI is increasing, especially in chronic infections caused by low-virulence pathogens.The use of biofilm-active antibiotics enables eradication of micro-organisms in the presence of a foreign body. The total duration of antibiotic treatment following revision surgery should not exceed 12 weeks. Cite this article: EFORT Open Rev 2019;4:482-494. DOI: 10.1302/2058-5241.4.180092.

Journal ArticleDOI
TL;DR: It is shown that S-phase kinase-associated protein 2 (SKP2) is responsible for lysine-48-linked poly-ubiquitination of beclin 1, resulting in its proteasomal degradation, and that inhibition of SKP2 enhances autophagy and reduces replication of MERS coronavirus.
Abstract: Autophagy is an essential cellular process affecting virus infections and other diseases and Beclin1 (BECN1) is one of its key regulators. Here, we identified S-phase kinase-associated protein 2 (SKP2) as E3 ligase that executes lysine-48-linked poly-ubiquitination of BECN1, thus promoting its proteasomal degradation. SKP2 activity is regulated by phosphorylation in a hetero-complex involving FKBP51, PHLPP, AKT1, and BECN1. Genetic or pharmacological inhibition of SKP2 decreases BECN1 ubiquitination, decreases BECN1 degradation and enhances autophagic flux. Middle East respiratory syndrome coronavirus (MERS-CoV) multiplication results in reduced BECN1 levels and blocks the fusion of autophagosomes and lysosomes. Inhibitors of SKP2 not only enhance autophagy but also reduce the replication of MERS-CoV up to 28,000-fold. The SKP2-BECN1 link constitutes a promising target for host-directed antiviral drugs and possibly other autophagy-sensitive conditions.

Journal ArticleDOI
TL;DR: It is claimed that beyond their power to provide predictions and explanations of cognitive phenomena, DNNs have the potential to contribute to an often overlooked but ubiquitous and fundamental use of scientific models: exploration.

Journal ArticleDOI
TL;DR: The United States (U.S.) federal government provides imagery obtained by federally funded Earth Observation satellites typically at no cost, until 2008 when the United States Geological Survey (USGS) made Landsat data accessible via the internet for free as mentioned in this paper.

Journal ArticleDOI
TL;DR: Intravascular infusion is the most popular route for therapeutic multipotent mesenchymal stromal/stem cell (MSC) delivery in hundreds of clinical trials and suitable strategies for assessing and controlling hemocompatibility and optimized cell delivery are crucial for the development of safer and more effective MSC therapies.

Journal ArticleDOI
26 Apr 2019-Science
TL;DR: A framework for rewilding actions that can serve as a guideline for researchers and managers and aims to promote beneficial interactions between society and nature, and identifies trophic complexity, stochastic disturbances, and dispersal as three critical components of natural ecosystem dynamics.
Abstract: BACKGROUND Rapid global change is creating fundamental challenges for the persistence of natural ecosystems and their biodiversity. Conservation efforts aimed at the protection of landscapes have had mixed success, and there is an increasing awareness that the long-term protection of biodiversity requires inclusion of flexible restoration along with protection. Rewilding is one such approach that has been both promoted and criticized in recent years. Proponents emphasize the potential of rewilding to tap opportunities for restoration while creating benefits for both ecosystems and societies. Critics discuss the lack of a consistent definition of rewilding and insufficient knowledge about its potential outcomes. Other criticisms arise from the mistaken notion that rewilding actions are planned without considering societal acceptability and benefits. Here, we present a framework for rewilding actions that can serve as a guideline for researchers and managers. The framework is applicable to a variety of rewilding approaches, ranging from passive to trophic rewilding, and aims to promote beneficial interactions between society and nature. ADVANCES The concept of rewilding has evolved from its initial emphasis on protecting large, connected areas for large carnivore conservation to a process-oriented, dynamic approach. On the basis of concepts from resilience and complexity theory of social-ecological systems, we identify trophic complexity, stochastic disturbances, and dispersal as three critical components of natural ecosystem dynamics. We propose that the restoration of these processes, and their interactions, can lead to increased self-sustainability of ecosystems and should be at the core of rewilding actions. Building on these concepts, we develop a framework to design and evaluate rewilding plans. Alongside ecological restoration goals, our framework emphasizes people’s perceptions and experiences of wildness and the regulating and material contributions from restoring nature. These societal aspects are important outcomes and may be critical factors for the success of rewilding initiatives (see the figure). We further identify current societal constraints on rewilding and suggest actions to mitigate them. OUTLOOK The concept of rewilding challenges us to rethink the way we manage nature and to broaden our vision about how nature will respond to changes that society brings, both intentionally and unintentionally. The effects of rewilding actions will be specific to each ecosystem, and thus a deep understanding of the processes that shape ecosystems is critical to anticipate these effects and to take appropriate management actions. In addition, the decision of whether a rewilding approach is desirable should consider stakeholders’ needs and expectations. To this end, structured restoration planning—based on participatory processes involving researchers, managers, and stakeholders—that includes monitoring and adaptive management can be used. With the recent designation of 2021–2030 as the “decade of ecosystem restoration” by the United Nations General Assembly, policy- and decision-makers could push rewilding topics to the forefront of discussions about how to reach post-2020 biodiversity goals.

Journal ArticleDOI
Georges Aad1, Alexander Kupco2, Samuel Webb3, Timo Dreyer4  +3380 moreInstitutions (206)
TL;DR: In this article, a search for high-mass dielectron and dimuon resonances in the mass range of 250 GeV to 6 TeV was performed at the Large Hadron Collider.

Journal ArticleDOI
E. Kou, Phillip Urquijo1, Wolfgang Altmannshofer2, F. Beaujean3  +558 moreInstitutions (140)
TL;DR: The Belle II detector as mentioned in this paper is a state-of-the-art detector for heavy flavor physics, quarkonium and exotic states, searches for dark sectors, and many other areas.
Abstract: The Belle II detector will provide a major step forward in precision heavy flavor physics, quarkonium and exotic states, searches for dark sectors, and many other areas. The sensitivity to a large number of key observables can be improved by about an order of magnitude compared to the current measurements, and up to two orders in very clean search measurements. This increase in statistical precision arises not only due to the increased luminosity, but also from improved detector efficiency and precision for many channels. Many of the most interesting observables tend to have very small theoretical uncertainties that will therefore not limit the physics reach. This book has presented many new ideas for measurements, both to elucidate the nature of current anomalies seen in flavor, and to search for new phenomena in a plethora of observables that will become accessible with the Belle II dataset. The simulation used for the studiesinthis book was state ofthe artat the time, though weare learning a lot more about the experiment during the commissioning period. The detector is in operation, and working spectacularly well.

Journal ArticleDOI
30 Jan 2019-Nature
TL;DR: Analysis of the atmospheric conditions that lead to these teleconnections confirms Rossby waves as the physical mechanism underlying these global teleconnection patterns and emphasizes their crucial role in dynamical tropical–extratropical couplings.
Abstract: Climatic observables are often correlated across long spatial distances, and extreme events, such as heatwaves or floods, are typically assumed to be related to such teleconnections1,2. Revealing atmospheric teleconnection patterns and understanding their underlying mechanisms is of great importance for weather forecasting in general and extreme-event prediction in particular3,4, especially considering that the characteristics of extreme events have been suggested to change under ongoing anthropogenic climate change5–8. Here we reveal the global coupling pattern of extreme-rainfall events by applying complex-network methodology to high-resolution satellite data and introducing a technique that corrects for multiple-comparison bias in functional networks. We find that the distance distribution of significant connections (P < 0.005) around the globe decays according to a power law up to distances of about 2,500 kilometres. For longer distances, the probability of significant connections is much higher than expected from the scaling of the power law. We attribute the shorter, power-law-distributed connections to regional weather systems. The longer, super-power-law-distributed connections form a global rainfall teleconnection pattern that is probably controlled by upper-level Rossby waves. We show that extreme-rainfall events in the monsoon systems of south-central Asia, east Asia and Africa are significantly synchronized. Moreover, we uncover concise links between south-central Asia and the European and North American extratropics, as well as the Southern Hemisphere extratropics. Analysis of the atmospheric conditions that lead to these teleconnections confirms Rossby waves as the physical mechanism underlying these global teleconnection patterns and emphasizes their crucial role in dynamical tropical–extratropical couplings. Our results provide insights into the function of Rossby waves in creating stable, global-scale dependencies of extreme-rainfall events, and into the potential predictability of associated natural hazards. Complex networks are used to analyse global-scale teleconnections between extreme-rainfall events, revealing a peak in the distance distribution of statistically significant connections at around 10,000 kilometres.