scispace - formally typeset
Search or ask a question
Institution

Hyogo College of Medicine

EducationNishinomiya, Hyôgo, Japan
About: Hyogo College of Medicine is a education organization based out in Nishinomiya, Hyôgo, Japan. It is known for research contribution in the topics: Transplantation & Population. The organization has 5030 authors who have published 10629 publications receiving 258734 citations. The organization is also known as: Hyōgo ika daigaku.


Papers
More filters
Journal ArticleDOI
04 May 2006-Nature
TL;DR: It is found that RIG-I is essential for the production of interferons in response to RNA viruses including paramyxoviruses, influenza virus and Japanese encephalitis virus, whereas MDA5 is critical for picornavirus detection.
Abstract: The innate immune system senses viral infection by recognizing a variety of viral components (including double-stranded (ds)RNA) and triggers antiviral responses. The cytoplasmic helicase proteins RIG-I (retinoic-acid-inducible protein I, also known as Ddx58) and MDA5 (melanoma-differentiation-associated gene 5, also known as Ifih1 or Helicard) have been implicated in viral dsRNA recognition. In vitro studies suggest that both RIG-I and MDA5 detect RNA viruses and polyinosine-polycytidylic acid (poly(I:C)), a synthetic dsRNA analogue. Although a critical role for RIG-I in the recognition of several RNA viruses has been clarified, the functional role of MDA5 and the relationship between these dsRNA detectors in vivo are yet to be determined. Here we use mice deficient in MDA5 (MDA5-/-) to show that MDA5 and RIG-I recognize different types of dsRNAs: MDA5 recognizes poly(I:C), and RIG-I detects in vitro transcribed dsRNAs. RNA viruses are also differentially recognized by RIG-I and MDA5. We find that RIG-I is essential for the production of interferons in response to RNA viruses including paramyxoviruses, influenza virus and Japanese encephalitis virus, whereas MDA5 is critical for picornavirus detection. Furthermore, RIG-I-/- and MDA5-/- mice are highly susceptible to infection with these respective RNA viruses compared to control mice. Together, our data show that RIG-I and MDA5 distinguish different RNA viruses and are critical for host antiviral responses.

3,508 citations

Journal Article
TL;DR: It is demonstrated that TLR4 is the gene product that regulates LPS response, and a single point mutation of the amino acid that is highly conserved among the IL-1/Toll receptor family is found.
Abstract: The human homologue of Drosophila Toll (hToll), also called Toll-like receptor 4 (TLR4), is a recently cloned receptor of the IL-1/Toll receptor family. Interestingly, the TLR4 gene has been localized to the same region to which the Lps locus (endotoxin unresponsive gene locus) is mapped. To examine the role of TLR4 in LPS responsiveness, we have generated mice lacking TLR4. Macrophages and B cells from TLR4-deficient mice did not respond to LPS. All these manifestations were quite similar to those of LPS-hyporesponsive C3H/HeJ mice. Furthermore, C3H/HeJ mice have, in the cytoplasmic portion of TLR4, a single point mutation of the amino acid that is highly conserved among the IL-1/Toll receptor family. Overexpression of wild-type TLR4 but not the mutant TLR4 from C3H/HeJ mice activated NF-κB. Taken together, the present study demonstrates that TLR4 is the gene product that regulates LPS response.

3,506 citations

Journal ArticleDOI
Peter Goldstraw1, Kari Chansky, John Crowley, Ramón Rami-Porta2, Hisao Asamura3, Wilfried Ernst Erich Eberhardt4, Andrew G. Nicholson1, Patti A. Groome5, Alan Mitchell, Vanessa Bolejack, David Ball6, David G. Beer7, Ricardo Beyruti8, Frank C. Detterbeck9, Wilfried Eberhardt4, John G. Edwards10, Françoise Galateau-Salle11, Dorothy Giroux12, Fergus V. Gleeson13, James Huang14, Catherine Kennedy15, Jhingook Kim16, Young Tae Kim17, Laura Kingsbury12, Haruhiko Kondo18, Mark Krasnik19, Kaoru Kubota20, Antoon Lerut21, Gustavo Lyons, Mirella Marino, Edith M. Marom22, Jan P. van Meerbeeck23, Takashi Nakano24, Anna K. Nowak25, Michael D Peake26, Thomas W. Rice27, Kenneth E. Rosenzweig28, Enrico Ruffini29, Valerie W. Rusch14, Nagahiro Saijo, Paul Van Schil23, Jean-Paul Sculier30, Lynn Shemanski12, Kelly G. Stratton12, Kenji Suzuki31, Yuji Tachimori32, Charles F. Thomas33, William D. Travis14, Ming-Sound Tsao34, Andrew T. Turrisi35, Johan Vansteenkiste21, Hirokazu Watanabe, Yi-Long Wu, Paul Baas36, Jeremy J. Erasmus22, Seiki Hasegawa24, Kouki Inai37, Kemp H. Kernstine38, Hedy L. Kindler39, Lee M. Krug14, Kristiaan Nackaerts21, Harvey I. Pass40, David C. Rice22, Conrad Falkson5, Pier Luigi Filosso29, Giuseppe Giaccone41, Kazuya Kondo42, Marco Lucchi43, Meinoshin Okumura44, Eugene H. Blackstone27, F. Abad Cavaco, E. Ansótegui Barrera, J. Abal Arca, I. Parente Lamelas, A. Arnau Obrer45, R. Guijarro Jorge45, D. Ball6, G.K. Bascom46, A. I. Blanco Orozco, M. A. González Castro, M.G. Blum, D. Chimondeguy, V. Cvijanovic47, S. Defranchi48, B. de Olaiz Navarro, I. Escobar Campuzano2, I. Macía Vidueira2, E. Fernández Araujo49, F. Andreo García49, Kwun M. Fong, G. Francisco Corral, S. Cerezo González, J. Freixinet Gilart, L. García Arangüena, S. García Barajas50, P. Girard, Tuncay Göksel, M. T. González Budiño51, G. González Casaurrán50, J. A. Gullón Blanco, J. Hernández Hernández, H. Hernández Rodríguez, J. Herrero Collantes, M. Iglesias Heras, J. M. Izquierdo Elena, Erik Jakobsen, S. Kostas52, P. León Atance, A. Núñez Ares, M. Liao, M. Losanovscky, G. Lyons, R. Magaroles53, L. De Esteban Júlvez53, M. Mariñán Gorospe, Brian C. McCaughan15, Catherine J. Kennedy15, R. Melchor Íñiguez54, L. Miravet Sorribes, S. Naranjo Gozalo, C. Álvarez de Arriba, M. Núñez Delgado, J. Padilla Alarcón, J. C. Peñalver Cuesta, Jongsun Park16, H. Pass40, M. J. Pavón Fernández, Mara Rosenberg, Enrico Ruffini29, V. Rusch14, J. Sánchez de Cos Escuín, A. Saura Vinuesa, M. Serra Mitjans, Trond Eirik Strand, Dragan Subotic, S.G. Swisher22, Ricardo Mingarini Terra8, Charles R. Thomas33, Kurt G. Tournoy55, P. Van Schil23, M. Velasquez, Y.L. Wu, K. Yokoi 
Imperial College London1, University of Barcelona2, Keio University3, University of Duisburg-Essen4, Queen's University5, Peter MacCallum Cancer Centre6, University of Michigan7, University of São Paulo8, Yale University9, Northern General Hospital10, University of Caen Lower Normandy11, Fred Hutchinson Cancer Research Center12, University of Oxford13, Memorial Sloan Kettering Cancer Center14, University of Sydney15, Sungkyunkwan University16, Seoul National University17, Kyorin University18, University of Copenhagen19, Nippon Medical School20, Katholieke Universiteit Leuven21, University of Texas MD Anderson Cancer Center22, University of Antwerp23, Hyogo College of Medicine24, University of Western Australia25, Glenfield Hospital26, Cleveland Clinic27, Icahn School of Medicine at Mount Sinai28, University of Turin29, Université libre de Bruxelles30, Juntendo University31, National Cancer Research Institute32, Mayo Clinic33, University of Toronto34, Sinai Grace Hospital35, Netherlands Cancer Institute36, Hiroshima University37, City of Hope National Medical Center38, University of Chicago39, New York University40, Georgetown University41, University of Tokushima42, University of Pisa43, Osaka University44, University of Valencia45, Good Samaritan Hospital46, Military Medical Academy47, Fundación Favaloro48, Autonomous University of Barcelona49, Complutense University of Madrid50, University of Oviedo51, National and Kapodistrian University of Athens52, Rovira i Virgili University53, Autonomous University of Madrid54, Ghent University55
TL;DR: The methods used to evaluate the resultant Stage groupings and the proposals put forward for the 8th edition of the TNM Classification for lung cancer due to be published late 2016 are described.

2,826 citations

Journal ArticleDOI
02 Nov 1995-Nature
TL;DR: The cloning of a recently identified IFN-γ-inducing factor (IGIF) that augments natural killer activity in spleen cells and may be involved in the development of Thl cells and also in mechanisms of tissue injury in inflammatory reactions is reported.
Abstract: The mechanism underlying the differentiation of CD4+ T cells into functionally distinct subsets (Th1 and Th2) is incompletely understood, and hitherto unidentified cytokines may be required for the functional maturation of these cells. Here we report the cloning of a recently identified IFN-gamma-inducing factor (IGIF) that augments natural killer (NK) activity in spleen cells. The gene encodes a precursor protein of 192 amino acids and a mature protein of 157 amino acids, which have no obvious similarities to any peptide in the databases. Messenger RNAs for IGIF and interleukin-12 (IL-12) are readily detected in Kupffer cells and activated macrophages. Recombinant IGIF induces IFN-gamma more potently than does IL-12, apparently through a separate pathway. Administration of anti-IGIF antibodies prevents liver damage in mice inoculated with Propionibacterium acnes and challenged with lipopolysaccharide, which induces toxic shock. IGIF may be involved in the development of Th1 cells and also in mechanisms of tissue injury in inflammatory reactions.

2,526 citations

Journal ArticleDOI
01 Jul 1999-Immunity
TL;DR: It is demonstrated that MyD88 knockout mice lack the ability to respond to LPS as measured by shock response, B cell proliferative response, and secretion of cytokines by macrophages and embryonic fibroblasts, and the inability of MyD 88 knockout mice to induce LPS-dependent gene expression cannot be attributed to lack of the activation of MAP kinases and NF-kappaB.

2,135 citations


Authors

Showing all 5043 results

NameH-indexPapersCitations
Shizuo Akira2611308320561
James G. Fujimoto1651115116451
Kiyoshi Takeda129416109817
David A. Brenner12849952756
Akira Yamamoto117199974961
Osamu Takeuchi11628890116
Takaomi C. Saido9035227802
Taroh Kinoshita8737923714
Takenobu Kamada8670027535
Kazuhiko Nakagawa8491741018
Takashi Yamamoto84140135169
Taro Kawai8314166916
Hiroo Imura8378129276
Kunio Matsumoto8246525131
Yukihiko Kitamura8041937965
Network Information
Related Institutions (5)
Juntendo University
23.7K papers, 644.1K citations

97% related

Tokyo Medical and Dental University
35.6K papers, 1M citations

94% related

Nagasaki University
32.4K papers, 660.4K citations

91% related

Niigata University
35.1K papers, 819.7K citations

91% related

Kanazawa University
39.6K papers, 946.8K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20232
202229
2021669
2020558
2019565
2018551