scispace - formally typeset
Search or ask a question
Institution

IBM

CompanyArmonk, New York, United States
About: IBM is a company organization based out in Armonk, New York, United States. It is known for research contribution in the topics: Layer (electronics) & Signal. The organization has 134567 authors who have published 253905 publications receiving 7458795 citations. The organization is also known as: International Business Machines Corporation & Big Blue.


Papers
More filters
Book
Enrico Clementi1, Carla Roetti1
01 Jan 1974

746 citations

Proceedings ArticleDOI
29 Sep 2007
TL;DR: This paper proposes Adaptive Support Vector Machines (A-SVMs) as a general method to adapt one or more existing classifiers of any type to the new dataset and outperforms several baseline and competing methods in terms of classification accuracy and efficiency in cross-domain concept detection in the TRECVID corpus.
Abstract: Many multimedia applications can benefit from techniques for adapting existing classifiers to data with different distributions. One example is cross-domain video concept detection which aims to adapt concept classifiers across various video domains. In this paper, we explore two key problems for classifier adaptation: (1) how to transform existing classifier(s) into an effective classifier for a new dataset that only has a limited number of labeled examples, and (2) how to select the best existing classifier(s) for adaptation. For the first problem, we propose Adaptive Support Vector Machines (A-SVMs) as a general method to adapt one or more existing classifiers of any type to the new dataset. It aims to learn the "delta function" between the original and adapted classifier using an objective function similar to SVMs. For the second problem, we estimate the performance of each existing classifier on the sparsely-labeled new dataset by analyzing its score distribution and other meta features, and select the classifiers with the best estimated performance. The proposed method outperforms several baseline and competing methods in terms of classification accuracy and efficiency in cross-domain concept detection in the TRECVID corpus.

745 citations

Journal ArticleDOI
TL;DR: A novel method for tolerating up to two disk failures in RAID architectures based on Reed-Solomon error-correcting codes, which can be used in any system requiring large symbols and relatively short codes, for instance, in multitrack magnetic recording.
Abstract: We present a novel method, that we call EVENODD, for tolerating up to two disk failures in RAID architectures. EVENODD employs the addition of only two redundant disks and consists of simple exclusive-OR computations. This redundant storage is optimal, in the sense that two failed disks cannot be retrieved with less than two redundant disks. A major advantage of EVENODD is that it only requires parity hardware, which is typically present in standard RAID-5 controllers. Hence, EVENODD can be implemented on standard RAID-5 controllers without any hardware changes. The most commonly used scheme that employes optimal redundant storage (i.e., two extra disks) is based on Reed-Solomon (RS) error-correcting codes. This scheme requires computation over finite fields and results in a more complex implementation. For example, we show that the complexity of implementing EVENODD in a disk array with 15 disks is about 50% of the one required when using the RS scheme. The new scheme is not limited to RAID architectures: it can be used in any system requiring large symbols and relatively short codes, for instance, in multitrack magnetic recording. To this end, we also present a decoding algorithm for one column (track) in error. >

745 citations

Journal ArticleDOI
TL;DR: It is shown that the asymptotic classical communication cost of RSP is one bit per qubit--half that of teleportation--and even less when transmitting part of a known entangled state.
Abstract: Quantum teleportation uses prior entanglement and forward classical communication to transmit one instance of an unknown quantum state. Remote state preparation (RSP) has the same goal, but the sender knows classically what state is to be transmitted. We show that the asymptotic classical communication cost of RSP is one bit per qubit--half that of teleportation--and even less when transmitting part of a known entangled state. We explore the tradeoff between entanglement and classical communication required for RSP, and discuss RSP capacities of general quantum channels.

745 citations

Journal ArticleDOI
TL;DR: It is shown that for repulsive electron interactions, the electrons are completely reflected by even the smallest scatterer, leading to a truly insulating weak link, in striking contrast to that for noninteracting electrons.
Abstract: We study theoretically the transport of a one-channel Luttinger liquid through a weak link. For repulsive electron interactions, the electrons are completely reflected by even the smallest scatterer, leading to a truly insulating weak link, in striking contrast to that for noninteracting electrons. At finite temperature (T) the conductance is nonzero, and is predicted to vanish as a power of T. At T=0 power-law current-voltage characteristics are predicted. For attractive interactions, a Luttinger liquid is argued to be perfectly transmitted through even the largest of barriers. The role of Fermi-liquid leads is also explored.

744 citations


Authors

Showing all 134658 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Anil K. Jain1831016192151
Hyun-Chul Kim1764076183227
Rodney S. Ruoff164666194902
Tobin J. Marks1591621111604
Jean M. J. Fréchet15472690295
Albert-László Barabási152438200119
György Buzsáki15044696433
Stanislas Dehaene14945686539
Philip S. Yu1481914107374
James M. Tour14385991364
Thomas P. Russell141101280055
Naomi J. Halas14043582040
Steven G. Louie13777788794
Daphne Koller13536771073
Network Information
Related Institutions (5)
Carnegie Mellon University
104.3K papers, 5.9M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

92% related

Bell Labs
59.8K papers, 3.1M citations

90% related

Microsoft
86.9K papers, 4.1M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022137
20213,163
20206,336
20196,427
20186,278