scispace - formally typeset
Search or ask a question
Institution

IBM

CompanyArmonk, New York, United States
About: IBM is a company organization based out in Armonk, New York, United States. It is known for research contribution in the topics: Layer (electronics) & Signal. The organization has 134567 authors who have published 253905 publications receiving 7458795 citations. The organization is also known as: International Business Machines Corporation & Big Blue.


Papers
More filters
Journal ArticleDOI
02 Feb 2018-Science
TL;DR: The HLA-I genotype of 1535 advanced cancer patients treated with immune checkpoint blockade is determined and Maximal heterozygosity at Hla-I loci improved overall survival after ICB compared with patients who were homozygous for at least one HLA locus.
Abstract: CD8 + T cell–dependent killing of cancer cells requires efficient presentation of tumor antigens by human leukocyte antigen class I (HLA-I) molecules. However, the extent to which patient-specific HLA-I genotype influences response to anti–programmed cell death protein 1 or anti–cytotoxic T lymphocyte–associated protein 4 is currently unknown. We determined the HLA-I genotype of 1535 advanced cancer patients treated with immune checkpoint blockade (ICB). Maximal heterozygosity at HLA-I loci (“A,” “B,” and “C”) improved overall survival after ICB compared with patients who were homozygous for at least one HLA locus. In two independent melanoma cohorts, patients with the HLA-B44 supertype had extended survival, whereas the HLA-B62 supertype (including HLA-B*15:01) or somatic loss of heterozygosity at HLA-I was associated with poor outcome. Molecular dynamics simulations of HLA-B*15:01 revealed different elements that may impair CD8 + T cell recognition of neoantigens. Our results have important implications for predicting response to ICB and for the design of neoantigen-based therapeutic vaccines.

739 citations

Journal ArticleDOI
TL;DR: This article introduces a new compressed representation for complex triangulated models and simple, yet efficient, compression and decompression algorithms, and improves on Michael Deering's pioneering results by exploiting the geometric coherence of several ancestors in the vertex spanning tree.
Abstract: The abundance and importance of complex 3-D data bases in major industry segments, the affordability of interactive 3-D rendering for office and consumer use, and the exploitation of the Internet to distribute and share 3-D data have intensified the need for an effective 3-D geometric compression technique that would significantly reduce the time required to transmit 3-D models over digital communication channels, and the amount of memory or disk space required to store the models. Because the prevalent representation of 3-D models for graphics purposes is polyhedral and because polyhedral models are in general triangulated for rendering, this article introduces a new compressed representation for complex triangulated models and simple, yet efficient, compression and decompression algorithms. In this scheme, vertex positions are quantized within the desired accuracy, a vertex spanning tree is used to predict the position of each vertex from 2,3, or 4 of its ancestors in the tree, and the correction vectors are entropy encoded. Properties, such as normals, colors, and texture coordinates, are compressed in a similar manner. The connectivity is encoded with no loss of information to an average of less than two bits per triangle. The vertex spanning tree and a small set of jump edges are used to split the model into a simple polygon. A triangle spanning tree and a sequence of marching bits are used to encode the triangulation of the polygon. Our approach improves on Michael Deering's pioneering results by exploiting the geometric coherence of several ancestors in the vertex spanning tree, preserving the connectivity with no loss of information, avoiding vertex repetitions, and using about three fewer bits for the connectivity. However, since decompression requires random access to all vertices, this method must be modified for hardware rendering with limited onboard memory. Finally, we demonstrate implementation results for a variety of VRML models with up to two orders of magnitude compression.

738 citations

Journal ArticleDOI
TL;DR: In this article, Luttinger's exactly soluble model of a one-dimensional many-fermion system is discussed and the exact spectrum, free energy, and dielectric constant are obtained.
Abstract: Luttinger’s exactly soluble model of a one-dimensional many-fermion system is discussed. We show that he did not solve his model properly because of the paradoxical fact that the density operator commutators [p(p), p(−p′)], which always vanish for any finite number of particles, no longer vanish in the field-theoretic limit of a filled Dirac sea. In fact the operators p(p) define a boson field which is ipso facto associated with the Fermi-Dirac field. We then use this observation to solve the model, and obtain the exact (and now nontrivial) spectrum, free energy, and dielectric constant. This we also extend to more realistic interactions in an Appendix. We calculate the Fermi surface parameter , and find: (i.e., there exists a sharp Fermi surface) only in the case of a sufficiently weak interaction.

736 citations

Proceedings ArticleDOI
01 May 1999
TL;DR: It is proved that for predicates reducible to conjunctions of elementary tests, the expected time to match a random event is no greater than O(N 1 ) where N is the number of subscriptions, and is a closed-form expression that depends on the number and type of attributes.
Abstract: Content-based subscription systems are an emerging alternative to traditional publish-subscribe systems, because they permit more flexible subscriptions along multiple dimensions. In these systems, each subscription is a predicate which may test arbitrary attributes within an event. However, the matching problem for content-based systems — determining for each event the subset of all subscriptions whose predicates match the event — is still an open problem. We present an efficient, scalable solution to the matching problem. Our solution has an expected time complexity that is sub-linear in the number of subscriptions, and it has a space complexity that is linear. Specifically, we prove that for predicates reducible to conjunctions of elementary tests, the expected time to match a random event is no greater than O(N 1 ) where N is the number of subscriptions, and is a closed-form expression that depends on the number and type of attributes (in some cases, 1=2). We present some optimizations to our algorithms that improve the search time. We also present the results of simulations that validate the theoretical bounds and that show acceptable performance levels for tens of thousands of subscriptions. Department of Computer Science, Cornell University, Ithaca, N.Y. 14853-7501, aguilera@cs.cornell.edu IBM T.J. Watson Research Center, Yorktown Heights, N.Y. 10598, fstrom, sturman, tusharg@watson.ibm.com Department of Computer Science, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave, Urbana, I.L. 61801, astley@cs.uiuc.edu

736 citations

Journal ArticleDOI
Thomas P. Russell1
TL;DR: The use of X-ray and neutron reflectivity to study polymers in the condensed state and in solutions is revieved in this article, where basic theoretical and experimental concepts of specular reflectivity are presented.

736 citations


Authors

Showing all 134658 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Anil K. Jain1831016192151
Hyun-Chul Kim1764076183227
Rodney S. Ruoff164666194902
Tobin J. Marks1591621111604
Jean M. J. Fréchet15472690295
Albert-László Barabási152438200119
György Buzsáki15044696433
Stanislas Dehaene14945686539
Philip S. Yu1481914107374
James M. Tour14385991364
Thomas P. Russell141101280055
Naomi J. Halas14043582040
Steven G. Louie13777788794
Daphne Koller13536771073
Network Information
Related Institutions (5)
Carnegie Mellon University
104.3K papers, 5.9M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

92% related

Bell Labs
59.8K papers, 3.1M citations

90% related

Microsoft
86.9K papers, 4.1M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022137
20213,163
20206,336
20196,427
20186,278