scispace - formally typeset
Search or ask a question
Institution

IBM

CompanyArmonk, New York, United States
About: IBM is a company organization based out in Armonk, New York, United States. It is known for research contribution in the topics: Layer (electronics) & Cache. The organization has 134567 authors who have published 253905 publications receiving 7458795 citations. The organization is also known as: International Business Machines Corporation & Big Blue.


Papers
More filters
Journal ArticleDOI
10 Mar 1995-Science
TL;DR: The ability to control perovskite sheet orientation through the choice of organic cation demonstrates the flexibility provided by organic-inorganic perovSKites and adds an important handle for tailoring and understanding lower dimensional transport in layered perovSkites.
Abstract: Single crystals of the layered organic-inorganic perovskites, [NH(2)C(I=NH(2)](2)(CH(3)NH(3))m SnmI3m+2, were prepared by an aqueous solution growth technique. In contrast to the recently discovered family, (C(4)H(9)NH(3))(2)(CH(3)NH(3))n-1SnnI3n+1, which consists of (100)-terminated perovskite layers, structure determination reveals an unusual structural class with sets of m -oriented CH(3)NH(3)SnI(3) perovskite sheets separated by iodoformamidinium cations. Whereas the m = 2 compound is semiconducting with a band gap of 0.33 +/- 0.05 electron volt, increasing m leads to more metallic character. The ability to control perovskite sheet orientation through the choice of organic cation demonstrates the flexibility provided by organic-inorganic perovskites and adds an important handle for tailoring and understanding lower dimensional transport in layered perovskites.

705 citations

Journal ArticleDOI
17 Oct 1996-Nature
TL;DR: It is shown that in rat hippocampal slices interneurons do indeed fire spike doublets under conditions in which gamma oscillations are synchronized over several millimetres, whereas they fire single spikes under other conditions.
Abstract: Synchronous neuronal oscillations in the 30-70 Hz range, known as gamma oscillations, occur in the cortex of many species. This synchronization can occur over large distances, and in some cases over multiple cortical areas and in both hemispheres; it has been proposed to underlie the binding of several features into a single perceptual entity. The mechanism by which coherent oscillations are generated remains unclear, because they often show zero or near-zero phase lags over long distances, whereas much greater phase lags would be expected from the slow speed of axonal conduction. We have previously shown that interneuron networks alone can generate gamma oscillations; here we propose a simple model to explain how an interconnected chain of such networks can generate coherent oscillations. The model incorporates known properties of excitatory pyramidal cells and inhibitory interneurons; it predicts that when excitation of interneurons reaches a level sufficient to induce pairs of spikes in rapid succession (spike doublets), the network will generate gamma oscillations that are synchronized on a millisecond time-scale from one end of the chain to the other. We show that in rat hippocampal slices interneurons do indeed fire spike doublets under conditions in which gamma oscillations are synchronized over several millimetres, whereas they fire single spikes under other conditions. Thus, known properties of neurons and local synaptic circuits can account for tightly synchronized oscillations in large neuronal ensembles.

705 citations

Proceedings ArticleDOI
09 May 2004
TL;DR: This paper presents an implementation of SWATT in off-the-shelf sensor network devices, which enables us to verify the contents of the program memory even while the sensor node is running.
Abstract: We expect a future where we are surrounded by embedded devices, ranging from Java-enabled cell phones to sensor networks and smart appliances. An adversary can compromise our privacy and safety by maliciously modifying the memory contents of these embedded devices. In this paper, we propose a softWare-based attestation technique (SWATT) to verify the memory contents of embedded devices and establish the absence of malicious changes to the memory contents. SWATT does not need physical access to the device's memory, yet provides memory content attestation similar to TCG or NGSCB without requiring secure hardware. SWATT can detect any change in memory contents with high probability, thus detecting viruses, unexpected configuration settings, and Trojan Horses. To circumvent SWATT, we expect that an attacker needs to change the hardware to hide memory content changes. We present an implementation of SWATT in off-the-shelf sensor network devices, which enables us to verify the contents of the program memory even while the sensor node is running.

704 citations

Book
01 May 1991
TL;DR: Using a combined experimental-theoretical approach unique in neuroscience, the authors present important new techniques for the physiological reconstruction of a large biological neuronal network in the CA3 hippocampal region in vitro.
Abstract: From the Publisher: The questions of how a large population of neurons in the brain functions, how synchronized firing of neurons is achieved, and what factors regulate how many and which neurons fire under different conditions form the central theme of this book. Using a combined experimental-theoretical approach unique in neuroscience, the authors present important new techniques for the physiological reconstruction of a large biological neuronal network. They begin by discussing experimental studies of the CA3 hippocampal region in vitro, focusing on single-cell and synaptic electrophysiology, particularly the effects a single neuron exerts on its neighbors. This is followed by a description of a computer model of the system, first for individual cells then for the entire detailed network, and the model is compared with experiments under a variety of conditions. The results shed significant light into the mechanisms of epilepsy, electroencephalograms, and biological oscillations and provide an excellent test case for theories of neural networks.

704 citations

Proceedings ArticleDOI
07 Jun 2004
TL;DR: In this article, a canonical first order delay model is proposed to propagate timing quantities like arrival times and required arrival times through the timing graph in this canonical form and the sensitivities of all timing quantities to each of the sources of variation are available.
Abstract: Variability in digital integrated circuits makes timing verification an extremely challenging task. In this paper, a canonical first order delay model is proposed that takes into account both correlated and independent randomness. A novel linear-time block-based statistical timing algorithm is employed to propagate timing quantities like arrival times and required arrival times through the timing graph in this canonical form. At the end of the statistical timing, the sensitivities of all timing quantities to each of the sources of variation are available. Excessive sensitivities can then be targeted by manual or automatic optimization methods to improve the robustness of the design. This paper also reports the first incremental statistical timer in the literature which is suitable for use in the inner loop of physical synthesis or other optimization programs. The third novel contribution of this paper is the computation of local and global criticality probabilities. For a very small cost in CPU time, the probability of each edge or node of the timing graph being critical is computed. Numerical results are presented on industrial ASIC chips with over two million logic gates.

703 citations


Authors

Showing all 134658 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Anil K. Jain1831016192151
Hyun-Chul Kim1764076183227
Rodney S. Ruoff164666194902
Tobin J. Marks1591621111604
Jean M. J. Fréchet15472690295
Albert-László Barabási152438200119
György Buzsáki15044696433
Stanislas Dehaene14945686539
Philip S. Yu1481914107374
James M. Tour14385991364
Thomas P. Russell141101280055
Naomi J. Halas14043582040
Steven G. Louie13777788794
Daphne Koller13536771073
Network Information
Related Institutions (5)
Carnegie Mellon University
104.3K papers, 5.9M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

92% related

Bell Labs
59.8K papers, 3.1M citations

90% related

Microsoft
86.9K papers, 4.1M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022137
20213,163
20206,336
20196,427
20186,278