scispace - formally typeset
Search or ask a question
Institution

IBM

CompanyArmonk, New York, United States
About: IBM is a company organization based out in Armonk, New York, United States. It is known for research contribution in the topics: Layer (electronics) & Signal. The organization has 134567 authors who have published 253905 publications receiving 7458795 citations. The organization is also known as: International Business Machines Corporation & Big Blue.


Papers
More filters
Journal ArticleDOI
24 Jan 2002-Nature
TL;DR: It is demonstrated that medulloblastomas are molecularly distinct from other brain tumours including primitive neuroectodermal tumours, atypical teratoid/rhabdoid tumours (AT/RTs) and malignant gliomas, and it is shown that the clinical outcome of children with medullOBlastomas is highly predictable on the basis of the gene expression profiles of their tumours at diagnosis.
Abstract: Embryonal tumours of the central nervous system (CNS) represent a heterogeneous group of tumours about which little is known biologically, and whose diagnosis, on the basis of morphologic appearance alone, is controversial. Medulloblastomas, for example, are the most common malignant brain tumour of childhood, but their pathogenesis is unknown, their relationship to other embryonal CNS tumours is debated, and patients' response to therapy is difficult to predict. We approached these problems by developing a classification system based on DNA microarray gene expression data derived from 99 patient samples. Here we demonstrate that medulloblastomas are molecularly distinct from other brain tumours including primitive neuroectodermal tumours (PNETs), atypical teratoid/rhabdoid tumours (AT/RTs) and malignant gliomas. Previously unrecognized evidence supporting the derivation of medulloblastomas from cerebellar granule cells through activation of the Sonic Hedgehog (SHH) pathway was also revealed. We show further that the clinical outcome of children with medulloblastomas is highly predictable on the basis of the gene expression profiles of their tumours at diagnosis.

2,365 citations

Journal ArticleDOI
TL;DR: Upper and lower bounds on the yield of pure singlets ($\ket{\Psi^-}$) distillable from mixed states $M$ are given, showing $D(M)>0$ if $\bra{Psi-}M\ket-}>\half$.
Abstract: Two separated observers, by applying local operations to a supply of not-too-impure entangled states (e.g., singlets shared through a noisy channel), can prepare a smaller number of entangled pairs of arbitrarily high purity (e.g., near-perfect singlets). These can then be used to faithfully teleport unknown quantum states from one observer to the other, thereby achieving faithful transmission of quantum information through a noisy channel. We give upper and lower bounds on the yield $D\left(M\right)$ of pure singlets $(|{\ensuremath{\Psi}}^{\ensuremath{-}}〉)$ distillable from mixed states $M$, showing $D\left(M\right)g0$ if $〈{\ensuremath{\Psi}}^{\ensuremath{-}}|M|{\ensuremath{\Psi}}^{\ensuremath{-}}〉g\frac{1}{2}$.

2,358 citations

Journal ArticleDOI
14 Sep 2017-Nature
TL;DR: The experimental optimization of Hamiltonian problems with up to six qubits and more than one hundred Pauli terms is demonstrated, determining the ground-state energy for molecules of increasing size, up to BeH2.
Abstract: The ground-state energy of small molecules is determined efficiently using six qubits of a superconducting quantum processor. Quantum simulation is currently the most promising application of quantum computers. However, only a few quantum simulations of very small systems have been performed experimentally. Here, researchers from IBM present quantum simulations of larger systems using a variational quantum eigenvalue solver (or eigensolver), a previously suggested method for quantum optimization. They perform quantum chemical calculations of LiH and BeH2 and an energy minimization procedure on a four-qubit Heisenberg model. Their application of the variational quantum eigensolver is hardware-efficient, which means that it is optimized on the given architecture. Noise is a big problem in this implementation, but quantum error correction could eventually help this experimental set-up to yield a quantum simulation of chemically interesting systems on a quantum computer. Quantum computers can be used to address electronic-structure problems and problems in materials science and condensed matter physics that can be formulated as interacting fermionic problems, problems which stretch the limits of existing high-performance computers1. Finding exact solutions to such problems numerically has a computational cost that scales exponentially with the size of the system, and Monte Carlo methods are unsuitable owing to the fermionic sign problem. These limitations of classical computational methods have made solving even few-atom electronic-structure problems interesting for implementation using medium-sized quantum computers. Yet experimental implementations have so far been restricted to molecules involving only hydrogen and helium2,3,4,5,6,7,8. Here we demonstrate the experimental optimization of Hamiltonian problems with up to six qubits and more than one hundred Pauli terms, determining the ground-state energy for molecules of increasing size, up to BeH2. We achieve this result by using a variational quantum eigenvalue solver (eigensolver) with efficiently prepared trial states that are tailored specifically to the interactions that are available in our quantum processor, combined with a compact encoding of fermionic Hamiltonians9 and a robust stochastic optimization routine10. We demonstrate the flexibility of our approach by applying it to a problem of quantum magnetism, an antiferromagnetic Heisenberg model in an external magnetic field. In all cases, we find agreement between our experiments and numerical simulations using a model of the device with noise. Our results help to elucidate the requirements for scaling the method to larger systems and for bridging the gap between key problems in high-performance computing and their implementation on quantum hardware.

2,348 citations

Journal ArticleDOI
Charles H. Bennett1
TL;DR: Near-optimal strategies are developed for estimating the free energy difference between two canonical ensembles, given a Metropolis-type Monte Carlo program for sampling each one, and their efficiency is never less or greater than that obtained by sampling only one ensemble.

2,347 citations

MonographDOI
TL;DR: In this paper, the authors present a regional L-moments algorithm for detecting homogeneous regions in a set of homogeneous data points and then select a frequency distribution for each region.
Abstract: Preface 1. Regional frequency analysis 2. L-moments 3. Screening the data 4. Identification of homogeneous regions 5. Choice of a frequency distribution 6. Estimation of the frequency distribution 7. Performance of the regional L-moment algorithm 8. Other topics 9. Examples Appendix References Index of notation.

2,329 citations


Authors

Showing all 134658 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Anil K. Jain1831016192151
Hyun-Chul Kim1764076183227
Rodney S. Ruoff164666194902
Tobin J. Marks1591621111604
Jean M. J. Fréchet15472690295
Albert-László Barabási152438200119
György Buzsáki15044696433
Stanislas Dehaene14945686539
Philip S. Yu1481914107374
James M. Tour14385991364
Thomas P. Russell141101280055
Naomi J. Halas14043582040
Steven G. Louie13777788794
Daphne Koller13536771073
Network Information
Related Institutions (5)
Carnegie Mellon University
104.3K papers, 5.9M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

92% related

Bell Labs
59.8K papers, 3.1M citations

90% related

Microsoft
86.9K papers, 4.1M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022137
20213,163
20206,336
20196,427
20186,278