scispace - formally typeset
Search or ask a question
Institution

IBM

CompanyArmonk, New York, United States
About: IBM is a company organization based out in Armonk, New York, United States. It is known for research contribution in the topics: Layer (electronics) & Cache. The organization has 134567 authors who have published 253905 publications receiving 7458795 citations. The organization is also known as: International Business Machines Corporation & Big Blue.


Papers
More filters
Posted Content
TL;DR: The random field models and techniques introduced in this paper differ from those common to much of the computer vision literature in that the underlying random fields are non-Markovian and have a large number of parameters that must be estimated.
Abstract: We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing the Kullback-Leibler divergence between the model and the empirical distribution of the training data. A greedy algorithm determines how features are incrementally added to the field and an iterative scaling algorithm is used to estimate the optimal values of the weights. The statistical modeling techniques introduced in this paper differ from those common to much of the natural language processing literature since there is no probabilistic finite state or push-down automaton on which the model is built. Our approach also differs from the techniques common to the computer vision literature in that the underlying random fields are non-Markovian and have a large number of parameters that must be estimated. Relations to other learning approaches including decision trees and Boltzmann machines are given. As a demonstration of the method, we describe its application to the problem of automatic word classification in natural language processing. Key words: random field, Kullback-Leibler divergence, iterative scaling, divergence geometry, maximum entropy, EM algorithm, statistical learning, clustering, word morphology, natural language processing

1,140 citations

Journal ArticleDOI
TL;DR: The normalized maximized likelihood, mixture, and predictive codings are each shown to achieve the stochastic complexity to within asymptotically vanishing terms.
Abstract: We review the principles of minimum description length and stochastic complexity as used in data compression and statistical modeling. Stochastic complexity is formulated as the solution to optimum universal coding problems extending Shannon's basic source coding theorem. The normalized maximized likelihood, mixture, and predictive codings are each shown to achieve the stochastic complexity to within asymptotically vanishing terms. We assess the performance of the minimum description length criterion both from the vantage point of quality of data compression and accuracy of statistical inference. Context tree modeling, density estimation, and model selection in Gaussian linear regression serve as examples.

1,140 citations

Journal ArticleDOI
13 Mar 2019-Nature
TL;DR: In this article, two quantum algorithms for machine learning on a superconducting processor are proposed and experimentally implemented, using a variational quantum circuit to classify the data in a way similar to the method of conventional SVMs.
Abstract: Machine learning and quantum computing are two technologies that each have the potential to alter how computation is performed to address previously untenable problems. Kernel methods for machine learning are ubiquitous in pattern recognition, with support vector machines (SVMs) being the best known method for classification problems. However, there are limitations to the successful solution to such classification problems when the feature space becomes large, and the kernel functions become computationally expensive to estimate. A core element in the computational speed-ups enabled by quantum algorithms is the exploitation of an exponentially large quantum state space through controllable entanglement and interference. Here we propose and experimentally implement two quantum algorithms on a superconducting processor. A key component in both methods is the use of the quantum state space as feature space. The use of a quantum-enhanced feature space that is only efficiently accessible on a quantum computer provides a possible path to quantum advantage. The algorithms solve a problem of supervised learning: the construction of a classifier. One method, the quantum variational classifier, uses a variational quantum circuit1,2 to classify the data in a way similar to the method of conventional SVMs. The other method, a quantum kernel estimator, estimates the kernel function on the quantum computer and optimizes a classical SVM. The two methods provide tools for exploring the applications of noisy intermediate-scale quantum computers3 to machine learning.

1,140 citations

Book ChapterDOI
Wil M. P. van der Aalst1, Wil M. P. van der Aalst2, A Arya Adriansyah1, Ana Karla Alves de Medeiros3, Franco Arcieri4, Thomas Baier5, Tobias Blickle6, Jagadeesh Chandra Bose1, Peter van den Brand, Ronald Brandtjen, Joos C. A. M. Buijs1, Andrea Burattin7, Josep Carmona8, Malu Castellanos9, Jan Claes10, Jonathan Cook11, Nicola Costantini, Francisco Curbera12, Ernesto Damiani13, Massimiliano de Leoni1, Pavlos Delias, Boudewijn F. van Dongen1, Marlon Dumas14, Schahram Dustdar15, Dirk Fahland1, Diogo R. Ferreira16, Walid Gaaloul17, Frank van Geffen18, Sukriti Goel19, CW Christian Günther, Antonella Guzzo20, Paul Harmon, Arthur H. M. ter Hofstede1, Arthur H. M. ter Hofstede2, John Hoogland, Jon Espen Ingvaldsen, Koki Kato21, Rudolf Kuhn, Akhil Kumar22, Marcello La Rosa2, Fabrizio Maria Maggi1, Donato Malerba23, RS Ronny Mans1, Alberto Manuel, Martin McCreesh, Paola Mello24, Jan Mendling25, Marco Montali26, Hamid Reza Motahari-Nezhad9, Michael zur Muehlen27, Jorge Munoz-Gama8, Luigi Pontieri28, Joel Ribeiro1, A Anne Rozinat, Hugo Seguel Pérez, Ricardo Seguel Pérez, Marcos Sepúlveda29, Jim Sinur, Pnina Soffer30, Minseok Song31, Alessandro Sperduti7, Giovanni Stilo4, Casper Stoel, Keith D. Swenson21, Maurizio Talamo4, Wei Tan12, Christopher Turner32, Jan Vanthienen33, George Varvaressos, Eric Verbeek1, Marc Verdonk34, Roberto Vigo, Jianmin Wang35, Barbara Weber36, Matthias Weidlich37, Ton Weijters1, Lijie Wen35, Michael Westergaard1, Moe Thandar Wynn2 
01 Jan 2012
TL;DR: This manifesto hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users to increase the maturity of process mining as a new tool to improve the design, control, and support of operational business processes.
Abstract: Process mining techniques are able to extract knowledge from event logs commonly available in today’s information systems. These techniques provide new means to discover, monitor, and improve processes in a variety of application domains. There are two main drivers for the growing interest in process mining. On the one hand, more and more events are being recorded, thus, providing detailed information about the history of processes. On the other hand, there is a need to improve and support business processes in competitive and rapidly changing environments. This manifesto is created by the IEEE Task Force on Process Mining and aims to promote the topic of process mining. Moreover, by defining a set of guiding principles and listing important challenges, this manifesto hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users. The goal is to increase the maturity of process mining as a new tool to improve the (re)design, control, and support of operational business processes.

1,135 citations


Authors

Showing all 134658 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Anil K. Jain1831016192151
Hyun-Chul Kim1764076183227
Rodney S. Ruoff164666194902
Tobin J. Marks1591621111604
Jean M. J. Fréchet15472690295
Albert-László Barabási152438200119
György Buzsáki15044696433
Stanislas Dehaene14945686539
Philip S. Yu1481914107374
James M. Tour14385991364
Thomas P. Russell141101280055
Naomi J. Halas14043582040
Steven G. Louie13777788794
Daphne Koller13536771073
Network Information
Related Institutions (5)
Carnegie Mellon University
104.3K papers, 5.9M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

92% related

Bell Labs
59.8K papers, 3.1M citations

90% related

Microsoft
86.9K papers, 4.1M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022137
20213,163
20206,336
20196,427
20186,278