scispace - formally typeset
Search or ask a question
Institution

IBM

CompanyArmonk, New York, United States
About: IBM is a company organization based out in Armonk, New York, United States. It is known for research contribution in the topics: Layer (electronics) & Signal. The organization has 134567 authors who have published 253905 publications receiving 7458795 citations. The organization is also known as: International Business Machines Corporation & Big Blue.


Papers
More filters
Proceedings ArticleDOI
21 Apr 2008
TL;DR: This paper objectify the WS-* vs. REST debate by giving a quantitative technical comparison based on architectural principles and decisions and shows that the two approaches differ in the number of architectural decisions that must be made and in theNumber of available alternatives.
Abstract: Recent technology trends in the Web Services (WS) domain indicate that a solution eliminating the presumed complexity of the WS-* standards may be in sight: advocates of REpresentational State Transfer (REST) have come to believe that their ideas explaining why the World Wide Web works are just as applicable to solve enterprise application integration problems and to simplify the plumbing required to build service-oriented architectures. In this paper we objectify the WS-* vs. REST debate by giving a quantitative technical comparison based on architectural principles and decisions. We show that the two approaches differ in the number of architectural decisions that must be made and in the number of available alternatives. This discrepancy between freedom-from-choice and freedom-of-choice explains the complexity difference perceived. However, we also show that there are significant differences in the consequences of certain decisions in terms of resulting development and maintenance costs. Our comparison helps technical decision makers to assess the two integration styles and technologies more objectively and select the one that best fits their needs: REST is well suited for basic, ad hoc integration scenarios, WS-* is more flexible and addresses advanced quality of service requirements commonly occurring in enterprise computing.

1,000 citations

Journal ArticleDOI
16 Aug 2012-Nature
TL;DR: The nanometre and micrometre scale interfaces between the crystalline domains that make up solution-processed solar cells are crucial for efficient charge transport and controlling the collection and minimizing the trapping of charge carriers at these boundaries is crucial to efficiency.
Abstract: Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer the potential for physical flexibility. Rapid progress in their development has increased their solar-power conversion efficiencies. The nanometre (electron) and micrometre (photon) scale interfaces between the crystalline domains that make up solution-processed solar cells are crucial for efficient charge transport. These interfaces include large surface area junctions between photoelectron donors and acceptors, the intralayer grain boundaries within the absorber, and the interfaces between photoactive layers and the top and bottom contacts. Controlling the collection and minimizing the trapping of charge carriers at these boundaries is crucial to efficiency.

999 citations

Journal ArticleDOI
Yurii A. Vlasov1, Sharee J. McNab1
TL;DR: The fabrication and accurate measurement of propagation and bending losses in single-mode silicon waveguides with submicron dimensions fabricated on silicon-on-insulator wafers with record low numbers can be used as a benchmark for further development of silicon microphotonic components and circuits.
Abstract: We report the fabrication and accurate measurement of propagation and bending losses in single-mode silicon waveguides with submicron dimensions fabricated on silicon-on-insulator wafers. Owing to the small sidewall surface roughness achieved by processing on a standard 200mm CMOS fabrication line, minimal propagation losses of 3.6+/-0.1dB/cm for the TE polarization were measured at the telecommunications wavelength of 1.5microm. Losses per 90 masculine bend are measured to be 0.086+/-0.005dB for a bending radius of 1microm and as low as 0.013+/-0.005dB for a bend radius of 2microm. These record low numbers can be used as a benchmark for further development of silicon microphotonic components and circuits.

999 citations

Journal ArticleDOI
TL;DR: XPS and isotope labeling coupled with differential electrochemical mass spectrometry (DEMS) is used to show that small amounts of carbonates formed during discharge and charge of Li-O2 cells in ether electrolytes originate from reaction of Li2O2 both with the electrolyte and with the C cathode.
Abstract: We use XPS and isotope labeling coupled with differential electrochemical mass spectrometry (DEMS) to show that small amounts of carbonates formed during discharge and charge of Li–O2 cells in ether electrolytes originate from reaction of Li2O2 (or LiO2) both with the electrolyte and with the C cathode. Reaction with the cathode forms approximately a monolayer of Li2CO3 at the C–Li2O2 interface, while reaction with the electrolyte forms approximately a monolayer of carbonate at the Li2O2–electrolyte interface during charge. A simple electrochemical model suggests that the carbonate at the electrolyte–Li2O2 interface is responsible for the large potential increase during charging (and hence indirectly for the poor rechargeability). A theoretical charge-transport model suggests that the carbonate layer at the C–Li2O2 interface causes a 10–100 fold decrease in the exchange current density. These twin “interfacial carbonate problems” are likely general and will ultimately have to be overcome to produce a high...

998 citations

Proceedings ArticleDOI
John R. Hershey1, Peder A. Olsen1
15 Apr 2007
TL;DR: Two new methods, the variational approximation and the Variational upper bound, are introduced and compared to existing methods and the benefits of each one are considered and the performance of each is evaluated through numerical experiments.
Abstract: The Kullback Leibler (KL) divergence is a widely used tool in statistics and pattern recognition. The KL divergence between two Gaussian mixture models (GMMs) is frequently needed in the fields of speech and image recognition. Unfortunately the KL divergence between two GMMs is not analytically tractable, nor does any efficient computational algorithm exist. Some techniques cope with this problem by replacing the KL divergence with other functions that can be computed efficiently. We introduce two new methods, the variational approximation and the variational upper bound, and compare them to existing methods. We discuss seven different techniques in total and weigh the benefits of each one against the others. To conclude we evaluate the performance of each one through numerical experiments.

998 citations


Authors

Showing all 134658 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Anil K. Jain1831016192151
Hyun-Chul Kim1764076183227
Rodney S. Ruoff164666194902
Tobin J. Marks1591621111604
Jean M. J. Fréchet15472690295
Albert-László Barabási152438200119
György Buzsáki15044696433
Stanislas Dehaene14945686539
Philip S. Yu1481914107374
James M. Tour14385991364
Thomas P. Russell141101280055
Naomi J. Halas14043582040
Steven G. Louie13777788794
Daphne Koller13536771073
Network Information
Related Institutions (5)
Carnegie Mellon University
104.3K papers, 5.9M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

92% related

Bell Labs
59.8K papers, 3.1M citations

90% related

Microsoft
86.9K papers, 4.1M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022137
20213,163
20206,336
20196,427
20186,278