scispace - formally typeset
Search or ask a question
Institution

IBM

CompanyArmonk, New York, United States
About: IBM is a company organization based out in Armonk, New York, United States. It is known for research contribution in the topics: Layer (electronics) & Cache. The organization has 134567 authors who have published 253905 publications receiving 7458795 citations. The organization is also known as: International Business Machines Corporation & Big Blue.


Papers
More filters
Patent
Johnny Meng-Han Shieh1
13 Jun 1996
TL;DR: In this article, a method, memory, and apparatus, having at least a processor, memory and touchscreen, for creating a virtual pointing device is presented. But the method requires at least one finger placed on the pointing device.
Abstract: A method, memory, and apparatus, having at least a processor, memory, and touchscreen, for creating a virtual pointing device. The method includes the steps of displaying a non-activated virtual pointing device on the touchscreen, in response to detecting at least one finger placed on the virtual pointing device, activating the virtual pointing device, and moving the virtual pointing device in accordance with movement of the at least one finger.

998 citations

Book
Gregory J. Chaitin1
30 Oct 1987
TL;DR: This paper reviews algorithmic information theory, which is an attempt to apply information-theoretic and probabilistic ideas to recursive function theory.
Abstract: This paper reviews algorithmic information theory, which is an attempt to apply information-theoretic and probabilistic ideas to recursive function theory. Typical concerns in this approach are, for example, the number of bits of information required to specify an algorithm, or the probability that a program whose bits are chosen by coin flipping produces a given output. During the past few years the definitions of algorithmic information theory have been reformulated. The basic features of the new formalism are presented here and certain results of R. M. Solovay are reported.

994 citations

Journal ArticleDOI
TL;DR: Applying the far-ultraviolet light in short intense pulses permitted us to control the depth of the incision with great precision and it was found that 1 joule/cm2 ablates corneal tissue to a depth of 1 micron.

990 citations

Journal ArticleDOI
TL;DR: The unified treatment of decoding techniques for LDPC codes presented here provides flexibility in selecting the appropriate scheme from performance, latency, computational-complexity, and memory-requirement perspectives.
Abstract: Various log-likelihood-ratio-based belief-propagation (LLR-BP) decoding algorithms and their reduced-complexity derivatives for low-density parity-check (LDPC) codes are presented. Numerically accurate representations of the check-node update computation used in LLR-BP decoding are described. Furthermore, approximate representations of the decoding computations are shown to achieve a reduction in complexity by simplifying the check-node update, or symbol-node update, or both. In particular, two main approaches for simplified check-node updates are presented that are based on the so-called min-sum approximation coupled with either a normalization term or an additive offset term. Density evolution is used to analyze the performance of these decoding algorithms, to determine the optimum values of the key parameters, and to evaluate finite quantization effects. Simulation results show that these reduced-complexity decoding algorithms for LDPC codes achieve a performance very close to that of the BP algorithm. The unified treatment of decoding techniques for LDPC codes presented here provides flexibility in selecting the appropriate scheme from performance, latency, computational-complexity, and memory-requirement perspectives.

989 citations

Journal ArticleDOI
Frank Stern1
TL;DR: In this article, self-consistent results for energy levels, populations, and charge distributions are given for $n$-type inversion layers on $p$ -type silicon.
Abstract: Self-consistent results for energy levels, populations, and charge distributions are given for $n$-type inversion layers on $p$-type silicon. Quantum effects are taken into account in the effective-mass approximation, and the envelope wave function is assumed to vanish at the surface. Approximate analytic results are given for some special cases. Numerical results are given for representative surface orientations, bulk acceptor concentrations, inversion-layer electron concentrations, and temperatures.

987 citations


Authors

Showing all 134658 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Anil K. Jain1831016192151
Hyun-Chul Kim1764076183227
Rodney S. Ruoff164666194902
Tobin J. Marks1591621111604
Jean M. J. Fréchet15472690295
Albert-László Barabási152438200119
György Buzsáki15044696433
Stanislas Dehaene14945686539
Philip S. Yu1481914107374
James M. Tour14385991364
Thomas P. Russell141101280055
Naomi J. Halas14043582040
Steven G. Louie13777788794
Daphne Koller13536771073
Network Information
Related Institutions (5)
Carnegie Mellon University
104.3K papers, 5.9M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

92% related

Bell Labs
59.8K papers, 3.1M citations

90% related

Microsoft
86.9K papers, 4.1M citations

89% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022137
20213,163
20206,336
20196,427
20186,278