scispace - formally typeset
Search or ask a question
Institution

Icahn School of Medicine at Mount Sinai

EducationNew York, New York, United States
About: Icahn School of Medicine at Mount Sinai is a education organization based out in New York, New York, United States. It is known for research contribution in the topics: Population & Medicine. The organization has 37488 authors who have published 76057 publications receiving 3704104 citations. The organization is also known as: Mount Sinai School of Medicine.


Papers
More filters
Journal ArticleDOI
TL;DR: A protocol whereby C57BL/6J mice that are repeatedly subjected to bouts of social defeat by a larger and aggressive CD-1 mouse results in the development of a clear depressive-like syndrome, characterized by enduring deficits in social interactions.
Abstract: A major impediment to novel drug development has been the paucity of animal models that accurately reflect symptoms of affective disorders. In animal models, prolonged social stress has proven to be useful in understanding the molecular mechanisms underlying affective-like disorders. When considering experimental approaches for studying depression, social defeat stress, in particular, has been shown to have excellent etiological, predictive, discriminative and face validity. Described here is a protocol whereby C57BL/6J mice that are repeatedly subjected to bouts of social defeat by a larger and aggressive CD-1 mouse results in the development of a clear depressive-like syndrome, characterized by enduring deficits in social interactions. Specifically, the protocol consists of three important stages, beginning with the selection of aggressive CD-1 mice, followed by agonistic social confrontations between the CD-1 and C57BL/6J mice, and concluding with the confirmation of social avoidance in subordinate C57BL/6J mice. The automated detection of social avoidance allows a marked increase in throughput, reproducibility and quantitative analysis. This protocol is highly adaptable, but in its most common form it requires 3-4 weeks for completion.

1,052 citations

Journal ArticleDOI
TL;DR: Meta-analysis provided strongest evidence for association around ZNF804A and this strengthened when the affected phenotype including bipolar disorder included bipolar disorder and the overall pattern of replication was unlikely to occur by chance.
Abstract: We carried out a genome-wide association study of schizophrenia (479 cases, 2,937 controls) and tested loci with P < 10(-5) in up to 16,726 additional subjects. Of 12 loci followed up, 3 had strong independent support (P < 5 x 10(-4)), and the overall pattern of replication was unlikely to occur by chance (P = 9 x 10(-8)). Meta-analysis provided strongest evidence for association around ZNF804A (P = 1.61 x 10(-7)) and this strengthened when the affected phenotype included bipolar disorder (P = 9.96 x 10(-9)).

1,050 citations

Journal ArticleDOI
TL;DR: Targeting more-intensive glucose lowering modestly reduced major macrovascular events and increased major hypoglycaemia over 4.4 years in persons with type 2 diabetes, and suggests that glucose-lowering regimens should be tailored to the individual.
Abstract: Improved glucose control in type 2 diabetes is known to reduce the risk of microvascular events. There is, however, continuing uncertainty about its impact on macrovascular disease. The aim of these analyses was to generate more precise estimates of the effects of more-intensive, compared with less-intensive, glucose control on the risk of major cardiovascular events amongst patients with type 2 diabetes. A prospectively planned group-level meta-analysis in which characteristics of trials to be included, outcomes of interest, analyses and subgroup definitions were all pre-specified. A total of 27,049 participants and 2,370 major vascular events contributed to the meta-analyses. Allocation to more-intensive, compared with less-intensive, glucose control reduced the risk of major cardiovascular events by 9% (HR 0.91, 95% CI 0.84–0.99), primarily because of a 15% reduced risk of myocardial infarction (HR 0.85, 95% CI 0.76–0.94). Mortality was not decreased, with non-significant HRs of 1.04 for all-cause mortality (95% CI 0.90–1.20) and 1.10 for cardiovascular death (95% CI 0.84–1.42). Intensively treated participants had significantly more major hypoglycaemic events (HR 2.48, 95% CI 1.91–3.21). Exploratory subgroup analyses suggested the possibility of a differential effect for major cardiovascular events in participants with and without macrovascular disease (HR 1.00, 95% CI 0.89–1.13, vs HR 0.84, 95% CI 0.74–0.94, respectively; interaction p = 0.04). Targeting more-intensive glucose lowering modestly reduced major macrovascular events and increased major hypoglycaemia over 4.4 years in persons with type 2 diabetes. The analyses suggest that glucose-lowering regimens should be tailored to the individual.

1,044 citations

MonographDOI
19 Jul 2013
TL;DR: This Book have some digital formats such us :paperbook, ebook, kindle, epub, fb2 and another formats.
Abstract: Book file PDF easily for everyone and every device. You can download and read online Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, Eighth Edition file PDF Book only if you are registered here. And also you can download or read online all Book PDF file that related with Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, Eighth Edition book. Happy reading Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, Eighth Edition Bookeveryone. Download file Free Book PDF Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, Eighth Edition at Complete PDF Library. This Book have some digital formats such us :paperbook, ebook, kindle, epub, fb2 and another formats. Here is The Complete PDF Book Library. It's free to register here to get Book file PDF Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, Eighth Edition.

1,043 citations


Authors

Showing all 37948 results

NameH-indexPapersCitations
Robert Langer2812324326306
Shizuo Akira2611308320561
Gordon H. Guyatt2311620228631
Eugene Braunwald2301711264576
Bruce S. McEwen2151163200638
Robert J. Lefkowitz214860147995
Peter Libby211932182724
Mark J. Daly204763304452
Stuart H. Orkin186715112182
Paul G. Richardson1831533155912
Alan C. Evans183866134642
John C. Morris1831441168413
Paul M. Thompson1832271146736
Tadamitsu Kishimoto1811067130860
Bruce M. Psaty1811205138244
Network Information
Related Institutions (5)
Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

99% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

98% related

University of California, San Francisco
186.2K papers, 12M citations

98% related

Baylor College of Medicine
94.8K papers, 5M citations

98% related

Brigham and Women's Hospital
110.5K papers, 6.8M citations

98% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023157
2022845
20217,117
20206,224
20195,200
20184,505