scispace - formally typeset
Search or ask a question
Institution

Ikerbasque

OtherBilbao, Spain
About: Ikerbasque is a other organization based out in Bilbao, Spain. It is known for research contribution in the topics: Graphene & Quantum. The organization has 713 authors who have published 7967 publications receiving 231990 citations. The organization is also known as: Basque Foundation for Science.
Topics: Graphene, Quantum, Population, Galaxy, Magnetization


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that focusing only on instrumental or intrinsic values may fail to resonate with views on personal and collective well-being, or “what is right,” with regard to nature and the environment, and it is time to engage seriously with a third class of values, one with diverse roots and current expressions: relational values.
Abstract: A cornerstone of environmental policy is the debate over protecting nature for humans’ sake (instrumental values) or for nature’s (intrinsic values) (1). We propose that focusing only on instrumental or intrinsic values may fail to resonate with views on personal and collective well-being, or “what is right,” with regard to nature and the environment. Without complementary attention to other ways that value is expressed and realized by people, such a focus may inadvertently promote worldviews at odds with fair and desirable futures. It is time to engage seriously with a third class of values, one with diverse roots and current expressions: relational values. By doing so, we reframe the discussion about environmental protection, and open the door to new, potentially more productive policy approaches.

977 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize recent developments and the current knowledge of extracellular vesicles (EVs) and discuss safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application.
Abstract: Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed.

954 citations

Journal ArticleDOI
09 Jan 2013-Neuron
TL;DR: Evidence is summarized that molecular pathways characterized in pathology are also utilized by microglia in the normal and developing brain to influence synaptic development and connectivity, and therefore should become targets of future research.

946 citations

Journal ArticleDOI
TL;DR: In this paper, the use of oleylamine (OAm) as a versatile reagent for the synthesis of various nanoparticle systems is discussed, including the ability of OAm to act as a surfactant, solvent, and reducing agent, as a function of other synthesis parameters.
Abstract: Wet chemistry in organic solvents has proven highly efficient for the preparation of several types of metallic, metal-oxide, and semiconductor nanostructures. This Short Review focuses on the use of oleylamine (OAm) as a versatile reagent for the synthesis of various nanoparticle systems. We describe the ability of OAm to act as a surfactant, solvent, and reducing agent, as a function of other synthesis parameters. We also discuss the specific role of OAm either alone or in combination with other reactants, to form nanostructures using a variety of organic or inorganic compounds as precursors. In certain cases OAm can form complex compounds with the metal ions of the corresponding precursor, leading to metastable compounds that can act as secondary precursors and thus be decomposed in a controlled way to yield nanoparticles. We also point out that OAm-stabilized particles can often be dispersed in different organic solvents yielding solutions with enhanced colloidal stability over long times and the poten...

933 citations

Journal ArticleDOI
Beatriz Pelaz1, Christoph Alexiou2, Ramon A. Alvarez-Puebla3, Frauke Alves4, Frauke Alves5, Anne M. Andrews6, Sumaira Ashraf1, Lajos P. Balogh, Laura Ballerini7, Alessandra Bestetti8, Cornelia Brendel1, Susanna Bosi9, Mónica Carril10, Warren C. W. Chan11, Chunying Chen, Xiaodong Chen12, Xiaoyuan Chen13, Zhen Cheng14, Daxiang Cui15, Jianzhong Du16, Christian Dullin4, Alberto Escudero17, Alberto Escudero1, Neus Feliu18, Mingyuan Gao, Michael D. George, Yury Gogotsi19, Arnold Grünweller1, Zhongwei Gu20, Naomi J. Halas21, Norbert Hampp1, Roland K. Hartmann1, Mark C. Hersam22, Patrick Hunziker23, Ji Jian24, Xingyu Jiang, Philipp Jungebluth25, Pranav Kadhiresan11, Kazunori Kataoka26, Ali Khademhosseini27, Jindřich Kopeček28, Nicholas A. Kotov29, Harald F. Krug30, Dong Soo Lee31, Claus-Michael Lehr32, Kam W. Leong33, Xing-Jie Liang34, Mei Ling Lim18, Luis M. Liz-Marzán10, Xiaowei Ma34, Paolo Macchiarini35, Huan Meng6, Helmuth Möhwald5, Paul Mulvaney8, Andre E. Nel6, Shuming Nie36, Peter Nordlander21, Teruo Okano, Jose Oliveira, Tai Hyun Park31, Reginald M. Penner37, Maurizio Prato9, Maurizio Prato10, Víctor F. Puntes38, Vincent M. Rotello39, Amila Samarakoon11, Raymond E. Schaak40, Youqing Shen24, Sebastian Sjöqvist18, Andre G. Skirtach5, Andre G. Skirtach41, Mahmoud Soliman1, Molly M. Stevens42, Hsing-Wen Sung43, Ben Zhong Tang44, Rainer Tietze2, Buddhisha Udugama11, J. Scott VanEpps29, Tanja Weil45, Tanja Weil5, Paul S. Weiss6, Itamar Willner46, Yuzhou Wu5, Yuzhou Wu47, Lily Yang, Zhao Yue1, Qian Zhang1, Qiang Zhang48, Xian-En Zhang, Yuliang Zhao, Xin Zhou, Wolfgang J. Parak1 
14 Mar 2017-ACS Nano
TL;DR: An overview of recent developments in nanomedicine is provided and the current challenges and upcoming opportunities for the field are highlighted and translation to the clinic is highlighted.
Abstract: The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic.

926 citations


Authors

Showing all 775 results

NameH-indexPapersCitations
Luis M. Liz-Marzán13261661684
Maurizio Prato10974163055
Francisco Guinea10857369426
Rafael Yuste10434237415
Tom Broadhurst9642230074
Alexei Verkhratsky8945029788
Maria Forsyth8474933340
J. Garay Garcia8134823275
Ángel Borja7731620302
Wei Zhang76193234966
Mirko Prato7637021189
Nate Bastian7635518342
A. J. Castro-Tirado7272824272
Rainer Hillenbrand7122718259
B. Andrei Bernevig6928029935
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Max Planck Society
406.2K papers, 19.5M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Weizmann Institute of Science
54.5K papers, 3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202320
202299
20211,123
20201,135
2019918
2018843