scispace - formally typeset
Search or ask a question
Institution

Illinois Institute of Technology

EducationChicago, Illinois, United States
About: Illinois Institute of Technology is a education organization based out in Chicago, Illinois, United States. It is known for research contribution in the topics: Electric power system & Wireless network. The organization has 10188 authors who have published 21062 publications receiving 554178 citations. The organization is also known as: IIT & Illinois Tech.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the phase change materials (PCM) and their application in energy storage is presented, where the main advantages of encapsulation are providing large heat transfer area, reduction of the PCMs reactivity towards the outside environment and controlling the changes in volume of the storage materials as phase change occurs.

2,636 citations

Journal ArticleDOI
F. P. An, J. Z. Bai, A. B. Balantekin1, H. R. Band1  +271 moreInstitutions (34)
TL;DR: The Daya Bay Reactor Neutrino Experiment has measured a nonzero value for the neutrino mixing angle θ(13) with a significance of 5.2 standard deviations.
Abstract: The Daya Bay Reactor Neutrino Experiment has measured a nonzero value for the neutrino mixing angle θ13 with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GW_(th) reactors were detected in six antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. With a 43 000 ton–GW_(th)–day live-time exposure in 55 days, 10 416 (80 376) electron-antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected number of antineutrinos at the far hall is R=0.940± 0.011(stat.)±0.004(syst.). A rate-only analysis finds sin^22θ_(13)=0.092±0.016(stat.)±0.005(syst.) in a three-neutrino framework.

2,163 citations

Journal ArticleDOI
TL;DR: In this paper, a method for combining results across independent-groups and repeated measures designs is described, and the conditions under which such an analysis is appropriate are discussed, and a meta-analysis procedure using design-specific estimates of sampling variance is described.
Abstract: When a meta-analysis on results from experimental studies is conducted, differences in the study design must be taken into consideration. A method for combining results across independent-groups and repeated measures designs is described, and the conditions under which such an analysis is appropriate are discussed. Combining results across designs requires that (a) all effect sizes be transformed into a common metric, (b) effect sizes from each design estimate the same treatment effect, and (c) meta-analysis procedures use design-specific estimates of sampling variance to reflect the precision of the effect size estimates.

1,949 citations

Proceedings ArticleDOI
14 Mar 2010
TL;DR: This paper addresses the problem of simultaneously achieving fine-grainedness, scalability, and data confidentiality of access control by exploiting and uniquely combining techniques of attribute-based encryption (ABE), proxy re-encryption, and lazy re- Encryption.
Abstract: Cloud computing is an emerging computing paradigm in which resources of the computing infrastructure are provided as services over the Internet. As promising as it is, this paradigm also brings forth many new challenges for data security and access control when users outsource sensitive data for sharing on cloud servers, which are not within the same trusted domain as data owners. To keep sensitive user data confidential against untrusted servers, existing solutions usually apply cryptographic methods by disclosing data decryption keys only to authorized users. However, in doing so, these solutions inevitably introduce a heavy computation overhead on the data owner for key distribution and data management when fine-grained data access control is desired, and thus do not scale well. The problem of simultaneously achieving fine-grainedness, scalability, and data confidentiality of access control actually still remains unresolved. This paper addresses this challenging open issue by, on one hand, defining and enforcing access policies based on data attributes, and, on the other hand, allowing the data owner to delegate most of the computation tasks involved in fine-grained data access control to untrusted cloud servers without disclosing the underlying data contents. We achieve this goal by exploiting and uniquely combining techniques of attribute-based encryption (ABE), proxy re-encryption, and lazy re-encryption. Our proposed scheme also has salient properties of user access privilege confidentiality and user secret key accountability. Extensive analysis shows that our proposed scheme is highly efficient and provably secure under existing security models.

1,903 citations

Journal ArticleDOI
TL;DR: The chemical, physical, and mechanical characteristics of nickel-based superalloys are reviewed with emphasis on the use of this class of materials within turbine engines as mentioned in this paper, and the role of major and minor alloying additions in multicomponent commercial cast and wrought super-alloys is discussed.
Abstract: The chemical, physical, and mechanical characteristics of nickel-based superalloys are reviewed with emphasis on the use of this class of materials within turbine engines. The role of major and minor alloying additions in multicomponent commercial cast and wrought superalloys is discussed. Microstructural stability and phases observed during processing and in subsequent elevated-temperature service are summarized. Processing paths and recent advances in processing are addressed. Mechanical properties and deformation mechanisms are reviewed, including tensile properties, creep, fatigue, and cyclic crack growth. I. Introduction N ICKEL-BASED superalloys are an unusual class of metallic materials with an exceptional combination of hightemperature strength, toughness, and resistance to degradation in corrosive or oxidizing environments. These materials are widely used in aircraft and power-generation turbines, rocket engines, and other challenging environments, including nuclear power and chemical processing plants. Intensive alloy and process development activities during the past few decades have resulted in alloys that can tolerate average temperatures of 1050 ◦ C with occasional excursions (or local hot spots near airfoil tips) to temperatures as high as 1200 ◦ C, 1 which is approximately 90% of the melting point of the material. The underlying aspects of microstructure and composition that result in these exceptional properties are briefly reviewed here. Major classes of superalloys that are utilized in gas-turbine engines and the corresponding processes for their production are outlined along with characteristic mechanical and physical properties.

1,826 citations


Authors

Showing all 10258 results

NameH-indexPapersCitations
David R. Williams1782034138789
David A. Bennett1671142109844
Herbert A. Simon157745194597
Naomi J. Halas14043582040
Ted Belytschko13454781345
Thomas E. Mallouk12254952593
Julie A. Schneider11849256843
Yang-Kook Sun11778158912
Cass R. Sunstein11778757639
D. Errede11089262903
Qian Wang108214865557
Patrick W. Corrigan10650146711
Jürgen Kurths105103862179
Wei Chen103143844994
Richard A. Posner9756640523
Network Information
Related Institutions (5)
Purdue University
163.5K papers, 5.7M citations

87% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

86% related

Pennsylvania State University
196.8K papers, 8.3M citations

86% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

85% related

Michigan State University
137K papers, 5.6M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202328
2022146
2021847
2020971
2019889
2018774