scispace - formally typeset
Search or ask a question
Institution

IMDEA

EducationMadrid, Spain
About: IMDEA is a education organization based out in Madrid, Spain. It is known for research contribution in the topics: Population & Graphene. The organization has 1733 authors who have published 5731 publications receiving 145698 citations.


Papers
More filters
Journal ArticleDOI
Cristen J. Willer1, Ellen M. Schmidt1, Sebanti Sengupta1, Gina M. Peloso2  +316 moreInstitutions (87)
TL;DR: It is found that loci associated with blood lipid levels are often associated with cardiovascular and metabolic traits, including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio and body mass index.
Abstract: Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,577 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P < 5 × 10(-8), including 62 loci not previously associated with lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian and African ancestry, we narrow association signals in 12 loci. We find that loci associated with blood lipid levels are often associated with cardiovascular and metabolic traits, including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio and body mass index. Our results demonstrate the value of using genetic data from individuals of diverse ancestry and provide insights into the biological mechanisms regulating blood lipids to guide future genetic, biological and therapeutic research.

2,585 citations

Journal ArticleDOI
TL;DR: This paper provides a taxonomy based on the D2D communicating spectrum and review the available literature extensively under the proposed taxonomy to provide new insights into the over-explored and under- Explored areas that lead to identify open research problems of D1D communications in cellular networks.
Abstract: Device-to-device (D2D) communications was initially proposed in cellular networks as a new paradigm for enhancing network performance. The emergence of new applications such as content distribution and location-aware advertisement introduced new user cases for D2D communications in cellular networks. The initial studies showed that D2D communications has advantages such as increased spectral efficiency and reduced communication delay. However, this communication mode introduces complications in terms of interference control overhead and protocols that are still open research problems. The feasibility of D2D communications in Long-Term Evolution Advanced is being studied by academia, industry, and standardization bodies. To date, there are more than 100 papers available on D2D communications in cellular networks, but there is no survey on this field. In this paper, we provide a taxonomy based on the D2D communicating spectrum and review the available literature extensively under the proposed taxonomy. Moreover, we provide new insights into the over-explored and under-explored areas that lead us to identify open research problems of D2D communications in cellular networks.

1,784 citations

Journal ArticleDOI
TL;DR: In this article, a taxonomy based on the D2D communicating spectrum and review the available literature extensively under the proposed taxonomy is provided, which provides new insights to the over-explored and underexplored areas which lead to identify open research problems of D2DM communication in cellular networks.
Abstract: Device-to-Device (D2D) communication was initially proposed in cellular networks as a new paradigm to enhance network performance. The emergence of new applications such as content distribution and location-aware advertisement introduced new use-cases for D2D communications in cellular networks. The initial studies showed that D2D communication has advantages such as increased spectral efficiency and reduced communication delay. However, this communication mode introduces complications in terms of interference control overhead and protocols that are still open research problems. The feasibility of D2D communications in LTE-A is being studied by academia, industry, and the standardization bodies. To date, there are more than 100 papers available on D2D communications in cellular networks and, there is no survey on this field. In this article, we provide a taxonomy based on the D2D communicating spectrum and review the available literature extensively under the proposed taxonomy. Moreover, we provide new insights to the over-explored and under-explored areas which lead us to identify open research problems of D2D communication in cellular networks.

1,590 citations

Journal ArticleDOI
TL;DR: In this article, the main achievements obtained with photocatalyst alternatives to TiO2 in the three main niches for this technology are summarized, with an historical perspective, in order to assess which of the photoactive materials are best for each particular application.
Abstract: Since the early development of this technology in the 1970s, TiO2 constitutes the archetypical photocatalyst due to its relatively high efficiency, low cost and availability. However, during the last decade a considerable number of new photocatalytic materials, either semiconductor or not, have been proposed as potential substitutes of TiO2, particularly in the case of solar applications, for which this standard photocatalyst is not very suitable because of its wide band gap. Semiconductors based on cations with d0 configuration such Ta5+ or Nb5+, as well as oxides or nitrides of d10 elements such as Bi3+, In3+ or Ga3+ are among the most successful novel photocatalysts, but non-semiconductor solids like cation-interchanged zeolites also produce interesting results. In addition, some classical semiconductors like ZnO or CdS, initially discarded as a consequence of their poor stability under irradiation, have been reconsidered as feasible photocatalysts for particular applications. This growing body of data requires new analysis of the challenges and opportunities facing photocatalysis in order to assess which of the photoactive materials are best for each particular application. In this review, we summarize, with an historical perspective, the main achievements obtained with photocatalyst alternatives to TiO2 in the three main niches for this technology: water splitting for hydrogen production, decontamination and disinfection processes, and organic synthesis.

1,119 citations

Journal ArticleDOI
TL;DR: The emerging field of 2D material polaritonics and their hybrids provide enticing avenues for manipulating light-matter interactions across the visible, infrared to terahertz spectral ranges, with new optical control beyond what can be achieved using traditional bulk materials.
Abstract: In recent years, enhanced light-matter interactions through a plethora of dipole-type polaritonic excitations have been observed in two-dimensional (2D) layered materials. In graphene, electrically tunable and highly confined plasmon-polaritons were predicted and observed, opening up opportunities for optoelectronics, bio-sensing and other mid-infrared applications. In hexagonal boron nitride, low-loss infrared-active phonon-polaritons exhibit hyperbolic behaviour for some frequencies, allowing for ray-like propagation exhibiting high quality factors and hyperlensing effects. In transition metal dichalcogenides, reduced screening in the 2D limit leads to optically prominent excitons with large binding energy, with these polaritonic modes having been recently observed with scanning near-field optical microscopy. Here, we review recent progress in state-of-the-art experiments, and survey the vast library of polaritonic modes in 2D materials, their optical spectral properties, figures of merit and application space. Taken together, the emerging field of 2D material polaritonics and their hybrids provide enticing avenues for manipulating light-matter interactions across the visible, infrared to terahertz spectral ranges, with new optical control beyond what can be achieved using traditional bulk materials.

976 citations


Authors

Showing all 1756 results

Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

91% related

Nanyang Technological University
112.8K papers, 3.2M citations

90% related

National University of Singapore
165.4K papers, 5.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20236
202258
2021711
2020699
2019638
2018616