scispace - formally typeset
Search or ask a question
Institution

Indian Council of Agricultural Research

GovernmentNew Delhi, India
About: Indian Council of Agricultural Research is a government organization based out in New Delhi, India. It is known for research contribution in the topics: Population & Agriculture. The organization has 11533 authors who have published 13637 publications receiving 149975 citations. The organization is also known as: Imperial Council of Agricultural Research & ICAR.


Papers
More filters
Journal ArticleDOI
Takashi Matsumoto1, Jianzhong Wu1, Hiroyuki Kanamori1, Yuichi Katayose1  +262 moreInstitutions (25)
11 Aug 2005-Nature
TL;DR: A map-based, finished quality sequence that covers 95% of the 389 Mb rice genome, including virtually all of the euchromatin and two complete centromeres, and finds evidence for widespread and recurrent gene transfer from the organelles to the nuclear chromosomes.
Abstract: Rice, one of the world's most important food plants, has important syntenic relationships with the other cereal species and is a model plant for the grasses. Here we present a map-based, finished quality sequence that covers 95% of the 389 Mb genome, including virtually all of the euchromatin and two complete centromeres. A total of 37,544 non-transposable-element-related protein-coding genes were identified, of which 71% had a putative homologue in Arabidopsis. In a reciprocal analysis, 90% of the Arabidopsis proteins had a putative homologue in the predicted rice proteome. Twenty-nine per cent of the 37,544 predicted genes appear in clustered gene families. The number and classes of transposable elements found in the rice genome are consistent with the expansion of syntenic regions in the maize and sorghum genomes. We find evidence for widespread and recurrent gene transfer from the organelles to the nuclear chromosomes. The map-based sequence has proven useful for the identification of genes underlying agronomic traits. The additional single-nucleotide polymorphisms and simple sequence repeats identified in our study should accelerate improvements in rice production.

3,423 citations

Journal ArticleDOI
Rudi Appels1, Rudi Appels2, Kellye Eversole, Nils Stein3  +204 moreInstitutions (45)
17 Aug 2018-Science
TL;DR: This annotated reference sequence of wheat is a resource that can now drive disruptive innovation in wheat improvement, as this community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.
Abstract: An annotated reference sequence representing the hexaploid bread wheat genome in 21 pseudomolecules has been analyzed to identify the distribution and genomic context of coding and noncoding elements across the A, B, and D subgenomes. With an estimated coverage of 94% of the genome and containing 107,891 high-confidence gene models, this assembly enabled the discovery of tissue- and developmental stage-related coexpression networks by providing a transcriptome atlas representing major stages of wheat development. Dynamics of complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. This community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.

2,118 citations

Journal ArticleDOI
Xun Xu1, Shengkai Pan1, Shifeng Cheng1, Bo Zhang1, Mu D1, Peixiang Ni1, Gengyun Zhang1, Shuang Yang1, Ruiqiang Li1, Jun Wang1, Gisella Orjeda2, Frank Guzman2, Torres M2, Roberto Lozano2, Olga Ponce2, Diana Martinez2, De la Cruz G3, Chakrabarti Sk3, Patil Vu3, Konstantin G. Skryabin4, Boris B. Kuznetsov4, Nikolai V. Ravin4, Tatjana V. Kolganova4, Alexey V. Beletsky4, Andrey V. Mardanov4, Di Genova A5, Dan Bolser5, David M. A. Martin5, Li G, Yang Y, Hanhui Kuang6, Hu Q6, Xiong X7, Gerard J. Bishop8, Boris Sagredo, Nilo Mejía, Zagorski W9, Robert Gromadka9, Jan Gawor9, Pawel Szczesny9, Sanwen Huang, Zhang Z, Liang C, He J, Li Y, He Y, Xu J, Youjun Zhang, Xie B, Du Y, Qu D, Merideth Bonierbale10, Marc Ghislain10, Herrera Mdel R, Giovanni Giuliano, Marco Pietrella, Gaetano Perrotta, Paolo Facella, O'Brien K11, Sergio Enrique Feingold, Barreiro Le, Massa Ga, Luis Aníbal Diambra12, Brett R Whitty13, Brieanne Vaillancourt13, Lin H13, Alicia N. Massa13, Geoffroy M13, Lundback S13, Dean DellaPenna13, Buell Cr14, Sanjeev Kumar Sharma14, David Marshall14, Robbie Waugh14, Glenn J. Bryan14, Destefanis M15, Istvan Nagy15, Dan Milbourne15, Susan Thomson16, Mark Fiers16, Jeanne M. E. Jacobs16, Kåre Lehmann Nielsen17, Mads Sønderkær17, Marina Iovene18, Giovana Augusta Torres18, Jiming Jiang18, Richard E. Veilleux19, Christian W. B. Bachem20, de Boer J20, Theo Borm20, Bjorn Kloosterman20, van Eck H20, Erwin Datema20, Hekkert Bt20, Aska Goverse20, van Ham Rc20, Richard G. F. Visser20 
10 Jul 2011-Nature
TL;DR: The potato genome sequence provides a platform for genetic improvement of this vital crop and predicts 39,031 protein-coding genes and presents evidence for at least two genome duplication events indicative of a palaeopolyploid origin.
Abstract: Potato (Solanum tuberosum L.) is the world's most important non-grain food crop and is central to global food security. It is clonally propagated, highly heterozygous, autotetraploid, and suffers acute inbreeding depression. Here we use a homozygous doubled-monoploid potato clone to sequence and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade. We also sequenced a heterozygous diploid clone and show that gene presence/absence variants and other potentially deleterious mutations occur frequently and are a likely cause of inbreeding depression. Gene family expansion, tissue-specific expression and recruitment of genes to new pathways contributed to the evolution of tuber development. The potato genome sequence provides a platform for genetic improvement of this vital crop.

1,813 citations

Book ChapterDOI
Wil M. P. van der Aalst1, Wil M. P. van der Aalst2, A Arya Adriansyah1, Ana Karla Alves de Medeiros3, Franco Arcieri4, Thomas Baier5, Tobias Blickle6, Jagadeesh Chandra Bose1, Peter van den Brand, Ronald Brandtjen, Joos C. A. M. Buijs1, Andrea Burattin7, Josep Carmona8, Malu Castellanos9, Jan Claes10, Jonathan Cook11, Nicola Costantini, Francisco Curbera12, Ernesto Damiani13, Massimiliano de Leoni1, Pavlos Delias, Boudewijn F. van Dongen1, Marlon Dumas14, Schahram Dustdar15, Dirk Fahland1, Diogo R. Ferreira16, Walid Gaaloul17, Frank van Geffen18, Sukriti Goel19, CW Christian Günther, Antonella Guzzo20, Paul Harmon, Arthur H. M. ter Hofstede1, Arthur H. M. ter Hofstede2, John Hoogland, Jon Espen Ingvaldsen, Koki Kato21, Rudolf Kuhn, Akhil Kumar22, Marcello La Rosa2, Fabrizio Maria Maggi1, Donato Malerba23, RS Ronny Mans1, Alberto Manuel, Martin McCreesh, Paola Mello24, Jan Mendling25, Marco Montali26, Hamid Reza Motahari-Nezhad9, Michael zur Muehlen27, Jorge Munoz-Gama8, Luigi Pontieri28, Joel Ribeiro1, A Anne Rozinat, Hugo Seguel Pérez, Ricardo Seguel Pérez, Marcos Sepúlveda29, Jim Sinur, Pnina Soffer30, Minseok Song31, Alessandro Sperduti7, Giovanni Stilo4, Casper Stoel, Keith D. Swenson21, Maurizio Talamo4, Wei Tan12, Christopher Turner32, Jan Vanthienen33, George Varvaressos, Eric Verbeek1, Marc Verdonk34, Roberto Vigo, Jianmin Wang35, Barbara Weber36, Matthias Weidlich37, Ton Weijters1, Lijie Wen35, Michael Westergaard1, Moe Thandar Wynn2 
01 Jan 2012
TL;DR: This manifesto hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users to increase the maturity of process mining as a new tool to improve the design, control, and support of operational business processes.
Abstract: Process mining techniques are able to extract knowledge from event logs commonly available in today’s information systems. These techniques provide new means to discover, monitor, and improve processes in a variety of application domains. There are two main drivers for the growing interest in process mining. On the one hand, more and more events are being recorded, thus, providing detailed information about the history of processes. On the other hand, there is a need to improve and support business processes in competitive and rapidly changing environments. This manifesto is created by the IEEE Task Force on Process Mining and aims to promote the topic of process mining. Moreover, by defining a set of guiding principles and listing important challenges, this manifesto hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users. The goal is to increase the maturity of process mining as a new tool to improve the (re)design, control, and support of operational business processes.

1,135 citations

Journal ArticleDOI
TL;DR: This work reports the ∼738-Mb draft whole genome shotgun sequence of CDC Frontier, a kabuli chickpea variety, which contains an estimated 28,269 genes, and identifies targets of both breeding-associated genetic sweeps and breeding- associated balancing selection.
Abstract: Chickpea (Cicer arietinum) is the second most widely grown legume crop after soybean, accounting for a substantial proportion of human dietary nitrogen intake and playing a crucial role in food security in developing countries. We report the ~738-Mb draft whole genome shotgun sequence of CDC Frontier, a kabuli chickpea variety, which contains an estimated 28,269 genes. Resequencing and analysis of 90 cultivated and wild genotypes from ten countries identifies targets of both breeding-associated genetic sweeps and breeding-associated balancing selection. Candidate genes for disease resistance and agronomic traits are highlighted, including traits that distinguish the two main market classes of cultivated chickpea—desi and kabuli. These data comprise a resource for chickpea improvement through molecular breeding and provide insights into both genome diversity and domestication.

1,014 citations


Authors

Showing all 11569 results

NameH-indexPapersCitations
Rajesh Kumar1494439140830
Louis Antonelli132108983916
Sanjay Gupta9990235039
Gaurav Sharma82124431482
Sudhir Kumar82524216349
Subrata Ghosh7884132147
Vinod Kumar7781526882
Ashwani Kumar6670318099
Gerald T. Keusch6232714572
C. Erik Hack6122112542
Vinay Hegde6146016719
Manish Kumar61142521762
Smita K. Nair5918412134
Pappannan Thiyagarajan5924510650
Martijn W. Heymans5836012195
Network Information
Related Institutions (5)
Nanjing Agricultural University
27.3K papers, 546.5K citations

87% related

China Agricultural University
35.1K papers, 727.5K citations

86% related

Huazhong Agricultural University
23.5K papers, 500.1K citations

85% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

85% related

University of Hohenheim
16.4K papers, 567.3K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202314
2022103
20212,310
20201,889
20191,580
20181,411