scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Astrophysics

FacilityBengaluru, Karnataka, India
About: Indian Institute of Astrophysics is a facility organization based out in Bengaluru, Karnataka, India. It is known for research contribution in the topics: Stars & Galaxy. The organization has 1637 authors who have published 3970 publications receiving 65856 citations. The organization is also known as: IIA & IIAP.
Topics: Stars, Galaxy, Magnetic field, Sunspot, Light curve


Papers
More filters
Journal ArticleDOI
TL;DR: The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrogram, and a novel optical interferometer.
Abstract: The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 sq. deg of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-Object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include measured abundances of 15 different elements for each star. In total, SDSS-III added 2350 sq. deg of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 sq. deg; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5,513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra.

2,471 citations

Journal ArticleDOI
TL;DR: SDSS-III as mentioned in this paper is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars.
Abstract: Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS DR8 (which occurred in Jan 2011). This paper presents an overview of the four SDSS-III surveys. BOSS will measure redshifts of 1.5 million massive galaxies and Lya forest spectra of 150,000 quasars, using the BAO feature of large scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z 100 per resolution element), H-band (1.51-1.70 micron) spectra of 10^5 evolved, late-type stars, measuring separate abundances for ~15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. MARVELS will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m/s, ~24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. (Abridged)

2,265 citations

Journal ArticleDOI
TL;DR: The first data release of SDSS-III is described in this article, which includes five-band imaging of roughly 5200 deg2 in the southern Galactic cap, bringing the total footprint of the Sloan Digital Sky Survey imaging to 14,555 deg2, or over a third of the Celestial Sphere.
Abstract: The Sloan Digital Sky Survey (SDSS) started a new phase in 2008 August, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Lyα forest, and a radial velocity search for planets around ~8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes five-band imaging of roughly 5200 deg2 in the southern Galactic cap, bringing the total footprint of the SDSS imaging to 14,555 deg2, or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent photometric recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Exploration (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameter pipeline, which has better determination of metallicity for high-metallicity stars.

1,578 citations

Journal ArticleDOI
TL;DR: In this paper, an abundance analysis for F- and G- dwarfs of the Galactic thick-disc component was performed using accurate radial velocities combined with the Hipparcos astrometry, kinematics (U, V and W) and Galactic orbital parameters.
Abstract: We have performed an abundance analysis for F- and G- dwarfs of the Galactic thick-disc component. A sample of 176 nearby (d≤ 150 pc) thick-disc candidate stars was chosen from the Hipparcos catalogue and subjected to a high-resolution spectroscopic analysis. Using accurate radial velocities combined with the Hipparcos astrometry, kinematics (U, V and W) and Galactic orbital parameters were computed. We estimate the probability for a star to belong to the thin disc, the thick disc or the halo. With a probability P≥ 70 per cent taken as certain membership, we assigned 95 stars to the thick disc, 13 to the thin disc, and 20 to the halo. The remaining 48 stars in the sample cannot be assigned with reasonable certainty to one of the three components. Abundances of C, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Ba, Ce, Nd and Eu have been obtained. The abundances for the thick-disc stars are compared with those for the thin-disc members from Reddy et al. The ratios of α-elements (O, Mg, Si, Ca and Ti) to iron for thick-disc stars show a clear enhancement compared to thin-disc members in the range −0.3 < [Fe/H] < −1.2. There are also other elements – Al, Sc, V, Co, and possibly Zn – which show enhanced ratios to iron in the thick disc relative to the thin disc. The abundances of Na, Cr, Mn, Ni and Cu (relative to Fe) are very similar for thin- and thick-disc stars. The dispersion in abundance ratios [X/Fe] at given [Fe/H] for thick-disc stars is consistent with the expected scatter due to measurement errors, suggesting a lack of ‘cosmic’ scatter. A few stars classified as members of the thick disc by our kinematic criteria show thin-disc abundances. These stars, which appear older than most thin-disc stars, are also, on average, younger than the thick-disc population. They may have originated early in the thin-disc history, and been subsequently scattered to hotter orbits by collisions. The thick disc may not include stars with [Fe/H] > −0.3. The observed compositions of the thin and thick discs seem to be consistent with the models of galaxy formation by hierarchical clustering in a Lambda cold dark matter (ΛCDM) universe.

902 citations

Journal ArticleDOI
31 Mar 2011-Nature
TL;DR: Observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made, using high-precision photometry obtained by the Kepler spacecraft to measure oscillations in several hundred red giants.
Abstract: Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained by the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly ~50 seconds) and those that are also burning helium (period spacing ~100 to 300 seconds)

620 citations


Authors

Showing all 1643 results

NameH-indexPapersCitations
Savita Mathur8232126330
Nat Gopalswamy7355020180
C. S. Unnikrishnan7022944192
Ralph S. Sutherland6121518087
Bruce Fegley5722810738
Kiyoshi Ichimoto5634815343
Swara Ravindranath5211815426
Avinash A. Deshpande5123710327
P. Sreekumar4919511604
Paul J. Wiita463197841
Thirupathi Sivarani4612626723
Dipankar Banerjee443669025
Takashi Sakurai433167004
M. Jayachandran422015515
David L. Lambert411597017
Network Information
Related Institutions (5)
INAF
30.8K papers, 1.2M citations

94% related

Institut d'Astrophysique de Paris
7.6K papers, 491.5K citations

93% related

Space Telescope Science Institute
14.1K papers, 947.2K citations

93% related

National Radio Astronomy Observatory
8.1K papers, 431.1K citations

92% related

Inter-University Centre for Astronomy and Astrophysics
3.2K papers, 157.3K citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202216
2021184
2020210
2019174
2018184