scispace - formally typeset
Search or ask a question

Showing papers by "Indian Institute of Science published in 2013"


Journal ArticleDOI
TL;DR: This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments, and highlights the experimental relevance of various semimicroscopic derivations of the continuum theory for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material.
Abstract: This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments. This approach offers a unified framework for the mechanical and statistical properties of living matter: biofilaments and molecular motors in vitro or in vivo, collections of motile microorganisms, animal flocks, and chemical or mechanical imitations. A major goal of this review is to integrate several approaches proposed in the literature, from semimicroscopic to phenomenological. In particular, first considered are ``dry'' systems, defined as those where momentum is not conserved due to friction with a substrate or an embedding porous medium. The differences and similarities between two types of orientationally ordered states, the nematic and the polar, are clarified. Next, the active hydrodynamics of suspensions or ``wet'' systems is discussed and the relation with and difference from the dry case, as well as various large-scale instabilities of these nonequilibrium states of matter, are highlighted. Further highlighted are various large-scale instabilities of these nonequilibrium states of matter. Various semimicroscopic derivations of the continuum theory are discussed and connected, highlighting the unifying and generic nature of the continuum model. Throughout the review, the experimental relevance of these theories for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material is discussed. Promising extensions toward greater realism in specific contexts from cell biology to animal behavior are suggested, and remarks are given on some exotic active-matter analogs. Last, the outlook for a quantitative understanding of active matter, through the interplay of detailed theory with controlled experiments on simplified systems, with living or artificial constituents, is summarized.

3,314 citations


Journal ArticleDOI
TL;DR: In this paper, the complexity and variety of fundamental phenomena in this material system with a focus on phase transformations and mechanical behaviour are discussed. And the challenges that lie ahead in achieving these goals are delineated.

1,797 citations


Journal ArticleDOI
TL;DR: In this article, a definition for the term ''halogen bond'' is proposed, which designates a specific subset of the inter-and intramolecular interactions involving a halogen atom in a molecular entity.
Abstract: This recommendation proposes a definition for the term ``halogen bond'', which designates a specific subset of the inter- and intramolecular interactions involving a halogen atom in a molecular entity.

1,386 citations


Journal ArticleDOI
TL;DR: Graphene-on-MoS2 binary heterostructures display remarkable dual optoelectronic functionality, including highly sensitive photodetection and gate-tunable persistent photoconductivity, and may lead to new graphene-based optoeLECTronic devices that are naturally scalable for large-area applications at room temperature.
Abstract: Combining the electronic properties of graphene(1,2) and molybdenum disulphide (MoS2)(3-6) in hybrid heterostructures offers the possibility to create devices with various functionalities. Electronic logic and memory devices have already been constructed from graphene-MoS2 hybrids(7,8), but they do not make use of the photosensitivity of MoS2, which arises from its optical-range bandgap(9). Here, we demonstrate that graphene-on-MoS2 binary heterostructures display remarkable dual optoelectronic functionality, including highly sensitive photodetection and gate-tunable persistent photoconductivity. The responsivity of the hybrids was found to be nearly 1 x 10(10) A W-1 at 130 K and 5 x 10(8) A W-1 at room temperature, making them the most sensitive graphene-based photodetectors. When subjected to time-dependent photoillumination, the hybrids could also function as a rewritable optoelectronic switch or memory, where the persistent state shows almost no relaxation or decay within experimental timescales, indicating near-perfect charge retention. These effects can be quantitatively explained by gate-tunable charge exchange between the graphene and MoS2 layers, and may lead to new graphene-based optoelectronic devices that are naturally scalable for large-area applications at room temperature.

1,275 citations


Journal ArticleDOI
TL;DR: Fluorescence-based detection is gaining increasing attention owing to its highsensitivity, simplicity, short response time, and its ability to be employed both in solution and solid phase.
Abstract: Fluorescence-baseddetection is gaining increasing attention owing to its highsensitivity, simplicity, short response time, and its ability to beemployed both in solution and solid phase. Numerousp-electron-rich fluorescent conjugated polymers have beensynthesized, and are used in the detection of trace amounts ofnitro aromatics.

1,213 citations


Journal ArticleDOI
TL;DR: This Perspective provides a brief historical introduction to crystal engineering itself and an assessment of the importance and utility of the supramolecular synthon, which is one of the most important concepts in the practical use and implementation of crystal design.
Abstract: How do molecules aggregate in solution, and how do these aggregates consolidate themselves in crystals? What is the relationship between the structure of a molecule and the structure of the crystal it forms? Why do some molecules adopt more than one crystal structure? Why do some crystal structures contain solvent? How does one design a crystal structure with a specified topology of molecules, or a specified coordination of molecules and/or ions, or with a specified property? What are the relationships between crystal structures and properties for molecular crystals? These are some of the questions that are being addressed today by the crystal engineering community, a group that draws from the larger communities of organic, inorganic, and physical chemists, crystallographers, and solid state scientists. This Perspective provides a brief historical introduction to crystal engineering itself and an assessment of the importance and utility of the supramolecular synthon, which is one of the most important concepts in the practical use and implementation of crystal design. It also provides a look to the future from the viewpoint of the author, and indicates some directions in which this field might be moving.

1,148 citations


Journal ArticleDOI
TL;DR: Newly developed proton-conducting materials, modularly built porous solids, including coordination polymers (CPs) or metal-organic frameworks (MOFs) are presented.
Abstract: Proton-conducting materials are an important component of fuel cells. Development of new types of proton-conducting materials is one of the most important issues in fuel-cell technology. Herein, we present newly developed proton-conducting materials, modularly built porous solids, including coordination polymers (CPs) or metal-organic frameworks (MOFs). The designable and tunable nature of the porous materials allows for fast development in this research field. Design and synthesis of the new types of proton-conducting materials and their unique proton-conduction properties are discussed.

635 citations


Journal ArticleDOI
TL;DR: An assessment of the mitigation potential possible in the AFOLU sector under possible future scenarios in which demand-side measures codeliver to aid food security concludes that while supply-side mitigation measures, such as changes in land management, might either enhance or negatively impact food security, demand- side mitigation measures should benefit both food security and greenhouse gas mitigation.
Abstract: Feeding 9-10billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to date have considered the interactions between these challenges. In this study we briefly outline the challenges, review the supply- and demand-side climate mitigation potential available in the Agriculture, Forestry and Other Land Use AFOLU sector and options for delivering food security. We briefly outline some of the synergies and trade-offs afforded by mitigation practices, before presenting an assessment of the mitigation potential possible in the AFOLU sector under possible future scenarios in which demand-side measures codeliver to aid food security. We conclude that while supply-side mitigation measures, such as changes in land management, might either enhance or negatively impact food security, demand-side mitigation measures, such as reduced waste or demand for livestock products, should benefit both food security and greenhouse gas (GHG) mitigation. Demand-side measures offer a greater potential (1.5-15.6Gt CO2-eq. yr(-1)) in meeting both challenges than do supply-side measures (1.5-4.3Gt CO2-eq. yr(-1) at carbon prices between 20 and 100US$ tCO(2)-eq. yr(-1)), but given the enormity of challenges, all options need to be considered. Supply-side measures should be implemented immediately, focussing on those that allow the production of more agricultural product per unit of input. For demand-side measures, given the difficulties in their implementation and lag in their effectiveness, policy should be introduced quickly, and should aim to codeliver to other policy agenda, such as improving environmental quality or improving dietary health. These problems facing humanity in the 21st Century are extremely challenging, and policy that addresses multiple objectives is required now more than ever.

507 citations


Journal ArticleDOI
TL;DR: Reflected light-sheet microscopy (RLSM), a fluorescence microscopy method allowing selective plane illumination throughout the nuclei of living mammalian cells, is developed and single-molecule measurements and statistical analysis revealed dynamic properties of transcription factors.
Abstract: Light-sheet microscopy using a laser beam reflected off a mirrored AFM cantilever provides high signal-to-background images suitable for high-speed quantitative single-molecule imaging of transcription factor binding to DNA in the nucleus of living mammalian cells.

482 citations


Journal ArticleDOI
TL;DR: New developments which provide insights into the roles of these enzymes in other aspects of cellular function are dealt with, with emphasis placed on novel hypotheses and various findings that have not yet been dealt with in a critical review.
Abstract: Restriction-modification (R-M) systems are ubiquitous and are often considered primitive immune systems in bacteria. Their diversity and prevalence across the prokaryotic kingdom are an indication of their success as a defense mechanism against invading genomes. However, their cellular defense function does not adequately explain the basis for their immaculate specificity in sequence recognition and nonuniform distribution, ranging from none to too many, in diverse species. The present review deals with new developments which provide insights into the roles of these enzymes in other aspects of cellular function. In this review, emphasis is placed on novel hypotheses and various findings that have not yet been dealt with in a critical review. Emerging studies indicate their role in various cellular processes other than host defense, virulence, and even controlling the rate of evolution of the organism. We also discuss how R-M systems could have successfully evolved and be involved in additional cellular portfolios, thereby increasing the relative fitness of their hosts in the population.

464 citations


Journal ArticleDOI
TL;DR: In this article, the spatial and temporal trend analysis of annual, monthly and seasonal maximum and minimum temperatures (t(max), t(min)) in India has been performed for three time slots: 1901-2003,1948-2003 and 1970-2003.

Journal ArticleDOI
TL;DR: In this paper, the authors reported resonant Raman scattering of MoS2 layers comprising of single, bi, four and seven layers, showing a strong dependence on the layer thickness.
Abstract: We report resonant Raman scattering of MoS2 layers comprising of single, bi, four and seven layers, showing a strong dependence on the layer thickness. Indirect band gap MoS2 in bulk becomes a direct band gap semiconductor in the monolayer form. New Raman modes are seen in the spectra of single- and few-layer MoS2 samples which are absent in the bulk. The Raman mode at similar to 230 cm(-1) appears for two, four and seven layers. This mode has been attributed to the longitudinal acoustic phonon branch at the M point (LA(M)) of the Brillouin zone. The mode at similar to 179 cm(-1) shows asymmetric character for a few-layer sample. The asymmetry is explained by the dispersion of the LA(M) branch along the G-M direction. The most intense spectral region near 455 cm(-1) shows a layer-dependent variation of peak positions and relative intensities. The high energy region between 510 and 645 cm(-1) is marked by the appearance of prominent new Raman bands, varying in intensity with layer numbers. Resonant Raman spectroscopy thus serves as a promising non invasive technique to accurately estimate the thickness of MoS2 layers down to a few atoms thick. Copyright (C) 2012 John Wiley & Sons, Ltd.

Journal ArticleDOI
24 Jan 2013-Nature
TL;DR: The findings suggest the use of chemically amenable phenalenyl-based molecules as a viable and scalable platform for building molecular-scale quantum spin memory and processors for technological development.
Abstract: When molecules of a phenalenyl derivative, which has no net spin, are deposited on a ferromagnet, they develop into a magnetic supramolecular layer with spin-filtering properties; this could be the basis for a new approach to building molecular magnetic devices. Various types of molecular magnets carrying high localized spin have been studied as potential devices for information processing and storage, but it remains a considerable challenge to electronically couple to these spin centres. Moodera et al. have designed a phenalenyl derivative, essentially a graphene fragment, with the potential to act as an interface for the exchange of magnetic spin information in molecular spintronic devices. The graphene fragment has no net spin itself, but when deposited as a layer on a ferromagnet it transforms to produce a supramolecular magnetic film. The resulting nanoscale magnetic molecules, or memory 'bits', can be manipulated by external stimuli, and the resulting device exhibits an unexpectedly large magnetoresistance of 20% near room temperature. The use of molecular spin state as a quantum of information for storage, sensing and computing has generated considerable interest in the context of next-generation data storage and communication devices1,2, opening avenues for developing multifunctional molecular spintronics3. Such ideas have been researched extensively, using single-molecule magnets4,5 and molecules with a metal ion6 or nitrogen vacancy7 as localized spin-carrying centres for storage and for realizing logic operations8. However, the electronic coupling between the spin centres of these molecules is rather weak, which makes construction of quantum memory registers a challenging task9. In this regard, delocalized carbon-based radical species with unpaired spin, such as phenalenyl10, have shown promise. These phenalenyl moieties, which can be regarded as graphene fragments, are formed by the fusion of three benzene rings and belong to the class of open-shell systems. The spin structure of these molecules responds to external stimuli11,12 (such as light, and electric and magnetic fields), which provides novel schemes for performing spin memory and logic operations. Here we construct a molecular device using such molecules as templates to engineer interfacial spin transfer resulting from hybridization and magnetic exchange interaction with the surface of a ferromagnet; the device shows an unexpected interfacial magnetoresistance of more than 20 per cent near room temperature. Moreover, we successfully demonstrate the formation of a nanoscale magnetic molecule with a well-defined magnetic hysteresis on ferromagnetic surfaces. Owing to strong magnetic coupling with the ferromagnet, such independent switching of an adsorbed magnetic molecule has been unsuccessful with single-molecule magnets13. Our findings suggest the use of chemically amenable phenalenyl-based molecules as a viable and scalable platform for building molecular-scale quantum spin memory and processors for technological development.

Journal ArticleDOI
TL;DR: The petrology and timing of crustal melting in the migmatites of the Higher Hima- layan Crystalline (HHC) exposed in Sikkim, India has been investigated in this paper.
Abstract: The petrology and timing of crustal melting has been investigated in the migmatites of the Higher Hima- layan Crystalline (HHC) exposed in Sikkim, India. The metapelites underwent pervasive partial melting through hydrous as well as dehydration melting reactions involving muscovite and biotite to produce a main assemblage of quartz, K-feldspar, plagioclase, biotite, garnet ± sillima- nite. Peak metamorphic conditions were 8-9 kbar and *800 C. Monazite and zircon crystals in several migmatites collected along a N-S transect show multiple growth domains. The domains were analyzed by micro- beam techniques for age (SHRIMP) and trace element composition (LA-ICP-MS) to relate ages to conditions of formation. Monazite preserves the best record of meta- morphism with domains that have different zoning pattern, composition and age. Zircon was generally less reactive than monazite, with metamorphic growth zones preserved in only a few samples. The growth of accessory minerals in the presence of melt was episodic in the interval between 31 and 17 Ma, but widespread and diachronous across samples. Systematic variations in the chemical composition of the dated mineral zones (HREE content and negative Eu anomaly) are related to the variation in garnet and K-feldspar abundances, respectively, and thus to meta- morphic reactions and P-T stages. In turn, this allows prograde versus decompressional and retrograde melt production to be timed. A hierarchy of timescales charac- terizes melting which occurred over a period of *15 Ma (31-17 Ma): a given block within this region traversed the field of melting in 5-7 Ma, whereas individual melting reactions lasted for time durations below, or approaching, the resolution of microbeam dating techniques (*0.6 Ma). An older *36 Ma high-grade event is recorded in an al- locthonous relict related to mafic lenses. We identify two sections of the HHC in Sikkim that traversed similar P-T conditions at different times, separated by a tectonic dis- continuity. The higher structural levels reached melting and peak conditions later (*26-23 Ma) than the lower structural levels (*31-27 Ma). Diachronicity across the HHC cannot be reconciled with channel flow models in their simplest form, as it requires two similar high-grade sections to move independently during collision.

Journal ArticleDOI
TL;DR: It is shown that risk minimization under 0-1 loss function has impressive noise-tolerance properties and that under squared error loss is tolerant only to uniform noise; risk minimizations under other loss functions is not noise tolerant.
Abstract: In this paper, we explore noise-tolerant learning of classifiers. We formulate the problem as follows. We assume that there is an unobservable training set that is noise free. The actual training set given to the learning algorithm is obtained from this ideal data set by corrupting the class label of each example. The probability that the class label of an example is corrupted is a function of the feature vector of the example. This would account for most kinds of noisy data one encounters in practice. We say that a learning method is noise tolerant if the classifiers learnt with noise-free data and with noisy data, both have the same classification accuracy on the noise-free data. In this paper, we analyze the noise-tolerance properties of risk minimization (under different loss functions). We show that risk minimization under 0-1 loss function has impressive noise-tolerance properties and that under squared error loss is tolerant only to uniform noise; risk minimization under other loss functions is not noise tolerant. We conclude this paper with some discussion on the implications of these theoretical results.

Journal ArticleDOI
TL;DR: Analysis of the wave functions of atoms in molecules shows the presence of an unusual C···Y interaction, which could be called 'carbon bonding', and high level quantum calculations show interactions between the positive face of methanol/methyl fluoride and electron rich centers of other molecules such as H2O.
Abstract: While the tetrahedral face of methane has an electron rich centre and can act as a hydrogen bond acceptor, substitution of one of its hydrogens with some electron withdrawing group (such as –F/OH) can make the opposite face electron deficient. Electrostatic potential calculations confirm this and high level quantum calculations show interactions between the positive face of methanol/methyl fluoride and electron rich centers of other molecules such as H2O. Analysis of the wave functions of atoms in molecules shows the presence of an unusual C⋯Y interaction, which could be called ‘carbon bonding’. NBO analysis and vibrational frequency shifts confirm the presence of this interaction. Given the properties of alkyl groups bonded to electronegative elements in biological molecules, such interactions could play a significant role, which is yet to be recognized. This and similar interactions could give an enthalpic contribution to what is called the ‘hydrophobic interactions’.

Journal ArticleDOI
01 May 2013-ACS Nano
TL;DR: Water-dispersible, photocatalytic Fe3O4@TiO2 core-shell magnetic nanoparticles have been prepared by anchoring cyclodextrin cavities to the TiO2 shell, and their ability to capture and photocatallytically destroy endocrine-disrupting chemicals, bisphenol A and dibutyl phthalate, present in water, has been demonstrated.
Abstract: Water-dispersible, photocatalytic Fe3O4@TiO2 core–shell magnetic nanoparticles have been prepared by anchoring cyclodextrin cavities to the TiO2 shell, and their ability to capture and photocatalytically destroy endocrine-disrupting chemicals, bisphenol A and dibutyl phthalate, present in water, has been demonstrated. The functionalized nanoparticles can be magnetically separated from the dispersion after photocatalysis and hence reused. Each component of the cyclodextrin-functionalized Fe3O4@TiO2 core–shell nanoparticle has a crucial role in its functioning. The tethered cyclodextrins are responsible for the aqueous dispersibility of the nanoparticles and their hydrophobic cavities for the capture of the organic pollutants that may be present in water samples. The amorphous TiO2 shell is the photocatalyst for the degradation and mineralization of the organics, bisphenol A and dibutyl phthalate, under UV illumination, and the magnetism associated with the 9 nm crystalline Fe3O4 core allows for the magneti...

Journal ArticleDOI
TL;DR: This work focuses on forests, which represent a majority of global biomass, productivity and biodiversity, and investigates the relationship between species richness and ecosystem function as measured by productivity or biomass.
Abstract: 1. The relationship between species richness and ecosystem function, as measured by productivity or biomass, is of long-standing theoretical and practical interest in ecology. This is especially true for forests, which represent a majority of global biomass, productivity and biodiversity.

Journal ArticleDOI
TL;DR: Through nanoindentation it is possible to correlate molecular-level properties such as crystal packing, interaction characteristics, and the inherent anisotropy with micro/macroscopic events such as desolvation, domain coexistence, layer migration, polymorphism, and solid-state reactivity.
Abstract: Nanoindentation is a technique for measuring the elastic modulus and hardness of small amounts of materials. This method, which has been used extensively for characterizing metallic and inorganic solids, is now being applied to organic and metalorganic crystals, and has also become relevant to the subject of crystal engineering, which is concerned with the design of molecular solids with desired properties and functions. Through nanoindentation it is possible to correlate molecular-level properties such as crystal packing, interaction characteristics, and the inherent anisotropy with micro/macroscopic events such as desolvation, domain coexistence, layer migration, polymorphism, and solid-state reactivity. Recent developments and exciting opportunities in this area are highlighted in this Minireview.

Proceedings ArticleDOI
01 Dec 2013
TL;DR: The approach works on the Lie group structure of 3D rotations and solves the problem of large-scale robust rotation averaging in two ways, using modern ℓ1 optimizers to carry out robust averaging of relative rotations that is efficient, scalable and robust to outliers.
Abstract: In this paper we address the problem of robust and efficient averaging of relative 3D rotations. Apart from having an interesting geometric structure, robust rotation averaging addresses the need for a good initialization for large scale optimization used in structure-from-motion pipelines. Such pipelines often use unstructured image datasets harvested from the internet thereby requiring an initialization method that is robust to outliers. Our approach works on the Lie group structure of 3D rotations and solves the problem of large-scale robust rotation averaging in two ways. Firstly, we use modern l1 optimizers to carry out robust averaging of relative rotations that is efficient, scalable and robust to outliers. In addition, we also develop a two step method that uses the l1 solution as an initialisation for an iteratively reweighted least squares (IRLS) approach. These methods achieve excellent results on large-scale, real world datasets and significantly outperform existing methods, i.e. the state-of-the-art discrete-continuous optimization method of [3] as well as the Weiszfeld method of [8]. We demonstrate the efficacy of our method on two large scale real world datasets and also provide the results of the two aforementioned methods for comparison.

Journal ArticleDOI
01 Nov 2013-Ecology
TL;DR: The multi-scaled movement results suggest that differences in resource acquisition may instead be a consequence of avoiding intraguild competition, and a more realistic representation of hierarchical behavioral interactions that may ultimately drive spatially explicit trophic structures of multi-predator communities.
Abstract: Most ecosystems have multiple predator species that not only compete for shared prey, but also pose direct threats to each other. These intraguild interactions are key drivers of carnivore community structure, with ecosystem-wide cascading effects. Yet, behavioral mechanisms for coexistence of multiple carnivore species remain poorly understood. The challenges of studying large, free-ranging carnivores have resulted in mainly coarse-scale examination of behavioral strategies without information about all interacting competitors. We overcame some of these challenges by examining the concurrent fine-scale movement decisions of almost all individuals of four large mammalian carnivore species in a closed terrestrial system. We found that the intensity of intraguild interactions did not follow a simple hierarchical allometric pattern, because spatial and behavioral tactics of subordinate species changed with threat and resource levels across seasons. Lions (Panthera leo) were generally unrestricted and anchored themselves in areas rich in not only their principal prey, but also, during periods of resource limitation (dry season), rich in the main prey for other carnivores. Because of this, the greatest cost (potential intraguild predation) for subordinate carnivores was spatially coupled with the highest potential benefit of resource acquisition (prey-rich areas), especially in the dry season. Leopard (P. pardus) and cheetah (Acinonyx jubatus) overlapped with the home range of lions but minimized their risk using fine-scaled avoidance behaviors and restricted resource acquisition tactics. The cost of intraguild competition was most apparent for cheetahs, especially during the wet season, as areas with energetically rewarding large prey (wildebeest) were avoided when they overlapped highly with the activity areas of lions. Contrary to expectation, the smallest species (African wild dog, Lycaon pictus) did not avoid only lions, but also used multiple tactics to minimize encountering all other competitors. Intraguild competition thus forced wild dogs into areas with the lowest resource availability year round. Coexistence of multiple carnivore species has typically been explained by dietary niche separation, but our multi-scaled movement results suggest that differences in resource acquisition may instead be a consequence of avoiding intraguild competition. We generate a more realistic representation of hierarchical behavioral interactions that may ultimately drive spatially explicit trophic structures of multi-predator communities.

Journal ArticleDOI
TL;DR: For the majority of sites, adding soil resource variables to topography nearly doubled the inferred role of habitat filtering, accounting for variation in compositional structure that would previously have been attributable to dispersal.
Abstract: Both habitat filtering and dispersal limitation influence the compositional structure of forest communities, but previous studies examining the relative contributions of these processes with variation partitioning have primarily used topography to represent the influence of the environment. Here, we bring together data on both topography and soil resource variation within eight large (24–50 ha) tropical forest plots, and use variation partitioning to decompose community compositional variation into fractions explained by spatial, soil resource and topographic variables. Both soil resources and topography account for significant and approximately equal variation in tree community composition (9–34% and 5–29%, respectively), and all environmental variables together explain 13–39% of compositional variation within a plot. A large fraction of variation (19–37%) was spatially structured, yet unexplained by the environment, suggesting an important role for dispersal processes and unmeasured environmental variables. For the majority of sites, adding soil resource variables to topography nearly doubled the inferred role of habitat filtering, accounting for variation in compositional structure that would previously have been attributable to dispersal. Our results, illustrated using a new graphical depiction of community structure within these plots, demonstrate the importance of small-scale environmental variation in shaping local community structure in diverse tropical forests around the globe.

Journal ArticleDOI
TL;DR: In this paper, the scalar dielectric constant was introduced to capture the fundamental gap renormalization due to electronic polarization in molecular crystals, and a new screened range-separated hybrid functional was proposed.
Abstract: Fundamental gap renormalization due to electronic polarization is a basic phenomenon in molecular crystals. Despite its ubiquity and importance, all conventional approaches within density-functional theory completely fail to capture it, even qualitatively. Here, we present a new screened range-separated hybrid functional, which, through judicious introduction of the scalar dielectric constant, quantitatively captures polarization-induced gap renormalization, as demonstrated on the prototypical organic molecular crystals of benzene, pentacene, and C${}_{60}$. This functional is predictive, as it contains system-specific adjustable parameters that are determined from first principles, rather than from empirical considerations.

Journal ArticleDOI
TL;DR: Two new anthracene-functionalized fluorescent tris-imidazolium salts have been synthesized, characterized, and proven to be selective sensors for picric acid, which is a common constituent of many powerful explosives.
Abstract: Two new anthracene-functionalized fluorescent tris-imidazolium salts have been synthesized, characterized, and proven to be selective sensors for picric acid, which is a common constituent of many powerful explosives. Theoretical studies revealed an unusual ground-state electron transfer from picrate anion to the sensor molecules.

Journal ArticleDOI
TL;DR: A versatile aerobic catalytic system (I(2) and O(2)/TBHP) for C-H functionalization is reported and the highlight of the method is a Friedel-Crafts reaction of phenols and indole with tertiary amines.

Journal ArticleDOI
TL;DR: It is shown that the proposed antenna selection based SM systems are capable of attaining a significant gain in signal-to-noise ratio (SNR) compared to conventional SM systems, and also outperform the conventional MIMO systems employing antenna selection at both low and medium SNRs.
Abstract: Novel transmit antenna selection techniques are conceived for Spatial Modulation (SM) systems and their symbol error rate (SER) performance is investigated. Specifically, low-complexity Euclidean Distance optimized Antenna Selection (EDAS) and Capacity Optimized Antenna Selection (COAS) are studied. It is observed that the COAS scheme gives a better SER performance than the EDAS scheme. We show that the proposed antenna selection based SM systems are capable of attaining a significant gain in signal-to-noise ratio (SNR) compared to conventional SM systems, and also outperform the conventional MIMO systems employing antenna selection at both low and medium SNRs.

Journal ArticleDOI
TL;DR: In this paper, the spectral variation of aerosol optical depth (AOD) revealed the significance of anthropogenic activities on the increasing trend in AOD with a significant seasonal variability.
Abstract: The first regional synthesis of long-term (back to similar to 25 years at some stations) primary data (from direct measurement) on aerosol optical depth from the ARFINET (network of aerosol observatories established under the Aerosol Radiative Forcing over India (ARFI) project of Indian Space Research Organization over Indian subcontinent) have revealed a statistically significant increasing trend with a significant seasonal variability. Examining the current values of turbidity coefficients with those reported similar to 50 years ago reveals the phenomenal nature of the increase in aerosol loading. Seasonally, the rate of increase is consistently high during the dry months (December to March) over the entire region whereas the trends are rather inconsistent and weak during the premonsoon (April to May) and summer monsoon period (June to September). The trends in the spectral variation of aerosol optical depth (AOD) reveal the significance of anthropogenic activities on the increasing trend in AOD. Examining these with climate variables such as seasonal and regional rainfall, it is seen that the dry season depicts a decreasing trend in the total number of rainy days over the Indian region. The insignificant trend in AOD observed over the Indo-Gangetic Plain, a regional hot spot of aerosols, during the premonsoon and summer monsoon season is mainly attributed to the competing effects of dust transport and wet removal of aerosols by the monsoon rain. Contributions of different aerosol chemical species to the total dust, simulated using Goddard Chemistry Aerosol Radiation and Transport model over the ARFINET stations, showed an increasing trend for all the anthropogenic components and a decreasing trend for dust, consistent with the inference deduced from trend in Angstrom exponent.

Journal ArticleDOI
TL;DR: In this paper, the authors examined whether superflares with energy of 10^33 - 10^35 erg could occur on the present Sun through the use of simple order-of-magnitude estimates based on current ideas relating to the mechanisms of the solar dynamo.
Abstract: Recent observations of solar type stars with the Kepler satellite by Maehara et al. have revealed the existence of superflares (with energy of 10^33 - 10^35 erg) on Sun-like stars, which are similar to our Sun in their surface temperature (5600 K - 6000 K) and slow rotation (rotational period > 10 days). From the statistical analysis of these superflares, it was found that superflares with energy 10^34 erg occur once in 800 years and superflares with 10^35 erg occur once in 5000 years on Sun-like stars. In this paper, we examine whether superflares with energy of 10^33 - 10^35 erg could occur on the present Sun through the use of simple order-of-magnitude estimates based on current ideas relating to the mechanisms of the solar dynamo.

Journal ArticleDOI
TL;DR: In this paper, the authors build on the background of available literature and suggest the need for benchmarking indicator-based approach in a given urban area and incorporating various local issues, thus enhancing the long-term sustainability of cities which can be developed by introducing sustainability indicators into the urban planning process.

Journal ArticleDOI
TL;DR: Neutral and cationic copper bis(thiosemicarbazone) complexes bearing methyl, phenyl, and hydrogen, on the diketo-backbone of the ligand have been synthesized and revealed that they are cytotoxic unlike the corresponding zinc complexes.
Abstract: Neutral and cationic copper bis(thiosemicarbazone) complexes bearing methyl, phenyl, and hydrogen, on the diketo-backbone of the ligand have been synthesized. All of them were characterized by spectroscopic methods and in three cases by X-ray crystallography. In vitro cytotoxicity studies revealed that they are cytotoxic unlike the corresponding zinc complexes. Copper complexes Cu(GTSC) and Cu(GTSCHCl) derived from glyoxal-bis(4-methyl-4-phenyl-3-thiosemicarbazone) (GTSCH(2)) are the most cytotoxic complexes against various human cancer cell lines, with a potency similar to that of the anticancer drug adriamycin and up to 1000 fold higher than that of the corresponding zinc complex. Tritiated thymidine incorporation assay revealed that Cu(GTSC) and Cu(GTSCHCl) inhibit DNA synthesis substantially. Cell cycle analyses showed that Cu(GTSC) and Cu(GTSCHCl) induce apoptosis in HCT116 cells. The Cu(GTSCHCl) complex caused distinct DNA cleavage and Topo II alpha inhibition unlike that for Cu(GTSC). In vivo administration of Cu(GTSC) significantly inhibits tumor growth in HCT116 xenografts in nude mice.