scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology Bhubaneswar

EducationBhubaneswar, India
About: Indian Institute of Technology Bhubaneswar is a education organization based out in Bhubaneswar, India. It is known for research contribution in the topics: Large Hadron Collider & Higgs boson. The organization has 1185 authors who have published 3132 publications receiving 48832 citations.


Papers
More filters
Journal ArticleDOI
Albert M. Sirunyan, Armen Tumasyan, Wolfgang Adam1, Federico Ambrogi1  +2294 moreInstitutions (194)
TL;DR: In this paper, the Higgs boson mass was measured in the H → ZZ → 4l (l = e, μ) decay channel and the signal strength modifiers for individual Higgs production modes were also measured.
Abstract: Properties of the Higgs boson are measured in the H → ZZ → 4l (l = e, μ) decay channel. A data sample of proton-proton collisions at $ \sqrt{s}=13 $ TeV, collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 fb$^{−1}$ is used. The signal strength modifier μ, defined as the ratio of the observed Higgs boson rate in the H → ZZ → 4l decay channel to the standard model expectation, is measured to be μ = 1.05$_{− 0.17}^{+ 0.19}$ at m$_{H}$ = 125.09 GeV, the combined ATLAS and CMS measurement of the Higgs boson mass. The signal strength modifiers for the individual Higgs boson production modes are also measured. The cross section in the fiducial phase space defined by the requirements on lepton kinematics and event topology is measured to be 2. 92$_{− 0.44}^{+ 0.48}$ (stat)$_{− 0.24}^{+ 0.28}$ (syst)fb, which is compatible with the standard model prediction of 2.76 ± 0.14 fb. Differential cross sections are reported as a function of the transverse momentum of the Higgs boson, the number of associated jets, and the transverse momentum of the leading associated jet. The Higgs boson mass is measured to be m$_{H}$ = 125.26 ± 0.21 GeV and the width is constrained using the on-shell invariant mass distribution to be Γ$_{H}$ < 1.10 GeV, at 95% confidence level.

290 citations

Journal ArticleDOI
TL;DR: In this paper, an analysis of satellite data and global climate model simulations suggests that dust aerosol levels over the Arabian Sea, West Asia and the Arabian Peninsula are positively correlated with the intensity of the Indian summer monsoon.
Abstract: The Indian summer monsoon is influenced by numerous factors, including aerosol-induced changes to clouds, surface and atmospheric heating, and atmospheric circulation. An analysis of satellite data and global climate model simulations suggests that dust aerosol levels over the Arabian Sea, West Asia and the Arabian Peninsula are positively correlated with the intensity of the Indian summer monsoon.

288 citations

Journal ArticleDOI
TL;DR: The treatment technologies currently engaged for ECs removal in WWTPs are reviewed for further possible upgrades of the existing designs and results indicate that the fate and distribution of ECs can be approximately estimated based on physicochemical properties like octanol-water partitioning coefficient and solid-water distribution coefficient.

284 citations

Journal ArticleDOI
TL;DR: In this paper, a review of past research on WDs with a perspective to provide a comprehensive assessment of the state of knowledge to assist both researchers and policymakers, and context for future research.
Abstract: Cyclonic storms associated with the midlatitude Subtropical Westerly Jet (SWJ), referred to as Western Disturbances (WDs), play a critical role in the meteorology of the Indian subcontinent. WDs embedded in the southward propagating SWJ produce extreme precipitation over northern India and are further enhanced over the Himalayas due to orographic land-atmosphere interactions. During December, January, and February, WD snowfall is the dominant precipitation input to establish and sustain regional snowpack, replenishing regional water resources. Spring melt is the major source of runoff to northern Indian rivers and can be linked to important hydrologic processes from aquifer recharge to flashfloods. Understanding the dynamical structure, evolution-decay, and interaction of WDs with the Himalayas is therefore necessary to improve knowledge which has wide ranging socioeconomic implications beyond short-term disaster response including cold season agricultural activities, management of water resources, and development of vulnerability-adaptive measures. In addition, WD wintertime precipitation provides critical mass input to existing glaciers and modulates the albedo characteristics of the Himalayas and Tibetan Plateau, affecting large-scale circulation and the onset of the succeeding Indian Summer Monsoon. Assessing the impacts of climate variability and change on the Indian subcontinent requires fundamental understanding of the dynamics of WDs. In particular, projected changes in the structure of the SWJ will influence evolution-decay processes of the WDs and impact Himalayan regional water availability. This review synthesizes past research on WDs with a perspective to provide a comprehensive assessment of the state of knowledge to assist both researchers and policymakers, and context for future research.

278 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a signal quality-aware Internet of Things (IoT)-enabled electrocardiogram (ECG) telemetry system for continuous cardiac health monitoring applications.
Abstract: In this paper, we propose a novel signal quality-aware Internet of Things (IoT)-enabled electrocardiogram (ECG) telemetry system for continuous cardiac health monitoring applications. The proposed quality-aware ECG monitoring system consists of three modules: 1) ECG signal sensing module; 2) automated signal quality assessment (SQA) module; and 3) signal-quality aware (SQAw) ECG analysis and transmission module. The main objectives of this paper are: design and development of a light-weight ECG SQA method for automatically classifying the acquired ECG signal into acceptable or unacceptable class and real-time implementation of proposed IoT-enabled ECG monitoring framework using ECG sensors, Arduino, Android phone, Bluetooth, and cloud server. The proposed framework is tested and validated using the ECG signals taken from the MIT-BIH arrhythmia and Physionet challenge databases and the real-time recorded ECG signals under different physical activities. Experimental results show that the proposed SQA method achieves promising results in identifying the unacceptable quality of ECG signals and outperforms existing methods based on the morphological and RR interval features and machine learning approaches. This paper further shows that the transmission of acceptable quality of ECG signals can significantly improve the battery lifetime of IoT-enabled devices. The proposed quality-aware IoT paradigm has great potential for assessing clinical acceptability of ECG signals in improvement of accuracy and reliability of unsupervised diagnosis system.

264 citations


Authors

Showing all 1220 results

NameH-indexPapersCitations
Gabor Istvan Veres135134996104
Márton Bartók7662226762
Kulamani Parida7046919139
Seema Bahinipati6552619144
Deepak Kumar Sahoo6243817308
Krishna R. Reddy5840011076
Ramayya Krishnan5219510378
Saroj K. Nayak491498319
Dipak Kumar Sahoo472347293
Ganapati Panda463568888
Raj Kishore451496886
Sukumar Mishra444057905
Mar Barrio Luna431795248
Chandra Sekhar Rout411837736
Subhransu Ranjan Samantaray391674880
Network Information
Related Institutions (5)
Indian Institute of Technology Roorkee
21.4K papers, 419.9K citations

95% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

94% related

Indian Institute of Technology Delhi
26.9K papers, 503.8K citations

93% related

Indian Institute of Technology Kanpur
28.6K papers, 576.8K citations

93% related

Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202329
202249
2021521
2020487
2019400
2018372