scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology Bombay

EducationMumbai, India
About: Indian Institute of Technology Bombay is a education organization based out in Mumbai, India. It is known for research contribution in the topics: Population & Thin film. The organization has 16756 authors who have published 33588 publications receiving 570559 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors estimate the viscosity of the Higher Himalayan Shear Zone (HHSZ) along a part of the Himalayan chain through India, Nepal and Bhutan, and its Prandtl number within ~1021-1028.
Abstract: Constraining magnitudes of mechanical and thermo-mechanical parameters of rocks and shear zones are the important goals in structural geology and tectonics (Talbot in J Struct Geol 21:949–957, 1999). Such parameters aid dynamic scaling of analogue tectonic models (Ramberg in Gravity, deformation and the Earth’s crust in theory, experiments and geological applications, 2nd edn. Academic Press, London, 1981), which are useful to unravel tectonics in further details (Schultz-Ela and Walsh in J Struct Geol 24:247–275, 2002). The channel flow extrusion of the Higher Himalayan Shear Zone (HHSZ, = Higher Himalaya) can be explained by a top-to-S/SW simple shear (i.e. the D2 deformation) in combination with a pressure gradient induced flow against gravity. Presuming its Newtonian incompressible rheology with parallel inclined boundaries, the viscosity (μ) of this shear zone along a part of the Himalayan chain through India, Nepal and Bhutan is estimated to vary widely between ~1016 and 1023 Pa s, and its Prandtl number (Pr) within ~1021–1028. The estimates utilized ranges of known thickness (6–58 km) of the HHSZ, that of its top subzone of ductile shear of normal shear sense (STDSU: 0.35–9.4 km), total rate of slip of its two boundaries (0.7–131 mm year−1), pressure gradient (0.02–6 kb km−1), density (2.2–3.1 g cm−3) and thermal diffusivity (0.5 × 10−6–2.1 × 10−6 m s−2) along the orogenic trend. Considering most of the parameters specifically for the Sutlej section (India), the calculated viscosity (μ) and the Prandtl number (Pr) of the HHSZ are deduced to be μ: ~1017–1023 Pa s and Pr ~ 1022–1028. The upper limits of the estimated viscosity ranges are broadly in conformity with a strong Tibetan mid-crust from where a part of the HHSZ rocks extruded. On the other hand, their complete ranges match with those for its constituent main rock types and partly with those for the superstructure and the infrastructure. The estimated mechanical and thermo-mechanical parameters of the HHSZ will help to build dynamically scaled analogue models for the Himalayan deformation of the D2–phase.

129 citations

Journal ArticleDOI
TL;DR: It is found that pi-conjugation along with the spin-polarization plays the major role in controlling the magnitude and sign of the coupling constant.
Abstract: A series of nitronyl nitroxide (NN) diradicals with linear conjugated couplers and another series with aromatic couplers have been investigated by the broken-symmetry (BS) DFT approach. The overlap integral between the magnetically active orbitals in the BS state has been explicitly computed and used for the evaluation of the magnetic exchange coupling constant (J). The calculated J values are in very good agreement with the observed values in the literature. The magnitude of J depends on the length of the coupler as well as the conformation of the radical units. The aromaticity of the spacer decreases the strength of the exchange coupling constant. The SOMO−SOMO energy splitting analysis, where SOMO stands for the singly occupied molecular orbital, and the calculation of electron paramagnetic resonance (EPR) parameters have also been carried out. The computed hyperfine coupling constants support the intramolecular magnetic interactions. The nature of magnetic exchange coupling constant can also be predic...

129 citations

Proceedings Article
27 Jul 2014
TL;DR: A novel parameter, tilt, is identified, which is the ratio of the maximum weight of satisfying assignment to minimum weight of satisfies assignment, and a novel approach is presented that works with a black-box oracle for weights of assignments and requires only an NP-oracle to solve both the counting and sampling problems when the tilt is small.
Abstract: Given a CNF formula and a weight for each assignment of values to variables, two natural problems are weighted model counting and distribution-aware sampling of satisfying assignments Both problems have a wide variety of important applications Due to the inherent complexity of the exact versions of the problems, interest has focused on solving them approximately Prior work in this area scaled only to small problems in practice, or failed to provide strong theoretical guarantees, or employed a computationally-expensive most-probable-explanation (MPE) queries that assumes prior knowledge of a factored representation of the weight distribution We identify a novel parameter, tilt, which is the ratio of the maximum weight of satisfying assignment to minimum weight of satisfying assignment and present a novel approach that works with a black-box oracle for weights of assignments and requires only an NP-oracle (in practice, a SAT-solver) to solve both the counting and sampling problems when the tilt is small Our approach provides strong theoretical guarantees, and scales to problems involving several thousand variables We also show that the assumption of small tilt can be significantly relaxed while improving computational efficiency if a factored representation of the weights is known

129 citations

Journal ArticleDOI
Betty Abelev1, Jaroslav Adam2, Dagmar Adamová3, Madan M. Aggarwal4  +941 moreInstitutions (94)
TL;DR: The nuclear modification factor R_{pPb), quantifying the D-meson yield in p-Pb collisions relative to the yield in pp collisions scaled by the number of binary nucleon-nucleon collisions, is compatible within the 15%-20% uncertainties with unity in the transverse momentum interval 1
Abstract: The p_{T}-differential production cross sections of the prompt charmed mesons D^{0}, D^{+}, D^{*+}, and D_{s}^{+} and their charge conjugate in the rapidity interval -0.96

129 citations

Journal ArticleDOI
TL;DR: A lower bound on the uncertainty product of signal representations in two FrFT domains for real signals is obtained, and it is shown that a Gaussian signal achieves the lower bound.
Abstract: The fractional Fourier transform (FrFT) can be thought of as a generalization of the Fourier transform to rotate a signal representation by an arbitrary angle /spl alpha/ in the time-frequency plane. A lower bound on the uncertainty product of signal representations in two FrFT domains for real signals is obtained, and it is shown that a Gaussian signal achieves the lower bound. The effect of shifting and scaling the signal on the uncertainty relation is discussed. An example is given in which the uncertainty relation for a real signal is obtained, and it is shown that this relation matches with that given by the uncertainty relation derived.

129 citations


Authors

Showing all 17055 results

NameH-indexPapersCitations
Jovan Milosevic1521433106802
C. N. R. Rao133164686718
Robert R. Edelman11960549475
Claude Andre Pruneau11461045500
Sanjeev Kumar113132554386
Basanta Kumar Nandi11257243331
Shaji Kumar111126553237
Josep M. Guerrero110119760890
R. Varma10949741970
Vijay P. Singh106169955831
Vinayak P. Dravid10381743612
Swagata Mukherjee101104846234
Anil Kumar99212464825
Dhiman Chakraborty9652944459
Michael D. Ward9582336892
Network Information
Related Institutions (5)
Royal Institute of Technology
68.4K papers, 1.9M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Delft University of Technology
94.4K papers, 2.7M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023175
2022433
20213,013
20203,093
20192,760
20182,549