scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology Bombay

EducationMumbai, India
About: Indian Institute of Technology Bombay is a education organization based out in Mumbai, India. It is known for research contribution in the topics: Population & Thin film. The organization has 16756 authors who have published 33588 publications receiving 570559 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the synthesis, gaseous uptake and chemo-sensing properties of four new 2D COFs with [3+3] structural motifs have been reported.
Abstract: Imine and β-ketoenamine based covalent-organic frameworks (COFs) are nitrogen rich organic porous materials which offer enhanced affinity for carbon dioxide. In this article, synthesis, gaseous uptake and chemo-sensing properties of four new 2-D COFs with [3+3] structural motifs have been reported. The COFs have been synthesized from readily available C3-symmetric aldehyde and amine building units via Schiff base condensation. Prior to the synthesis, reactivity and structural integrity of the building blocks were appropriated by a fully characterized model Schiff base (TAPB-Benz) obtained from the condensation of 1,3,5-tris(4′-aminophenyl)benzene (TAPB) and benzaldehyde. Reaction of 1,3,5-tris(4′-aminophenyl)benzene (TAPB) and 1,3,5-tris(4′-amino-3′,5′-isopropylphenyl)benzene (iPrTAPB) with 1,3,5-tris(4′-formylphenyl)benzene (TFPB) and 1,3,5-triformylphluroglucinol (TFP) in dry dioxane and acetic acid (cat.) resulted in the formation of crystalline 2-D frameworks, TAPB-TFPB, iPrTAPB-TFPB, TAPB-TFP and iPrTAPB-TFP. The COFs feature permanent porosity with high surface area and carbon dioxide uptake. Among these, iPrTAPB-TFP revealed the highest surface area of 756 m2 g−1 (Brunauer–Emmett–Teller) and 1515 m2 g−1 (Langmuir) and carbon dioxide uptake of 105 mg g−1 (273 K, 1 atm). Notably with 180 mg g−1 (273 K, 1 atm), TAPB-TFP shows the highest CO2 uptake capacity among all the COFs which is also comparable to previously reported high CO2 uptake capacity COFs. Furthermore, due to the inherent fluorescent capability of triphenylbenzene, the COFs are endowed with fluorescence and fluorescence chemo-sensing ability for polynitroaromatic analytes.

126 citations

Journal ArticleDOI
TL;DR: In this paper, the impacts of increased pollutant concentration may affect the behavior of the Earth-atmosphere system, and large-scale changes in atmospheric composition are associated with changes in the Earth's radiative balance and climatic change.

126 citations

Journal ArticleDOI
TL;DR: In this article, the effects of various strain rates on the fracture toughness as well as the energy-release rate of gas shales were investigated using three-point bending method was applied using notched semicircular bending shale specimens that were prepared as per the international standards.

126 citations

Journal ArticleDOI
TL;DR: SunPy as discussed by the authors is a data-analysis environment specializing in providing the software necessary to analyse solar and heliospheric data in Python, which can leverage the many existing tools already available in Python.
Abstract: This paper presents SunPy (version 0.5), a community-developed Python package for solar physics. Python, a free, cross-platform, general-purpose, high-level programming language, has seen widespread adoption among the scientific community, resulting in the availability of a large number of software packages, from numerical computation (NumPy, SciPy) and machine learning (scikit-learn) to visualization and plotting (matplotlib). SunPy is a data-analysis environment specializing in providing the software necessary to analyse solar and heliospheric data in Python. SunPy is open-source software (BSD licence) and has an open and transparent development workflow that anyone can contribute to. SunPy provides access to solar data through integration with the Virtual Solar Observatory (VSO), the Heliophysics Event Knowledgebase (HEK), and the HELiophysics Integrated Observatory (HELIO) webservices. It currently supports image data from major solar missions (e.g., SDO, SOHO, STEREO, and IRIS), time-series data from missions such as GOES, SDO/EVE, and PROBA2/LYRA, and radio spectra from e-Callisto and STEREO/SWAVES. We describe SunPyʼs functionality, provide examples of solar data analysis in SunPy, and show how Python-based solar data-analysis can leverage the many existing tools already available in Python. We discuss the future goals of the project and encourage interested users to become involved in the planning and development of SunPy.

125 citations

Journal ArticleDOI
TL;DR: An alternative metal-free decarboxylative nitration protocol for the preparation of the nitroolefins from α,β-unsaturated carboxylic acids using t-butylnitrite (t-BuONO) and TEMPO is reported.

125 citations


Authors

Showing all 17055 results

NameH-indexPapersCitations
Jovan Milosevic1521433106802
C. N. R. Rao133164686718
Robert R. Edelman11960549475
Claude Andre Pruneau11461045500
Sanjeev Kumar113132554386
Basanta Kumar Nandi11257243331
Shaji Kumar111126553237
Josep M. Guerrero110119760890
R. Varma10949741970
Vijay P. Singh106169955831
Vinayak P. Dravid10381743612
Swagata Mukherjee101104846234
Anil Kumar99212464825
Dhiman Chakraborty9652944459
Michael D. Ward9582336892
Network Information
Related Institutions (5)
Royal Institute of Technology
68.4K papers, 1.9M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Delft University of Technology
94.4K papers, 2.7M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023175
2022433
20213,013
20203,093
20192,760
20182,549