scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology Guwahati

EducationGuwahati, Assam, India
About: Indian Institute of Technology Guwahati is a education organization based out in Guwahati, Assam, India. It is known for research contribution in the topics: Adsorption & Catalysis. The organization has 6933 authors who have published 17102 publications receiving 257351 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The behavior of eleven half-scale, single-story masonry infilled reinforced concrete (RC) frames under slow cyclic in-plane lateral loading was experimentally studied in two stages as discussed by the authors.

78 citations

Journal ArticleDOI
TL;DR: In this paper, the dynamic stability of a rotating three layered symmetric sandwich beam with magnetorheological elastomer core and conductive skins subjected to axial periodic loads has been investigated using finite element method.
Abstract: In this work the dynamic stability of a rotating three layered symmetric sandwich beam with magnetorheological elastomer (MRE) core and conductive skins subjected to axial periodic loads has been investigated using finite element method (FEM). The derived governing equation of motion is in the form of a multi-degree of freedom Mathieu–Hill's equation with complex coefficients. The instability regions of the sandwich beam for the principal parametric resonance case have been determined by using the harmonic balance method. Effects of applied magnetic field, rotating speed, setting angle, hub radius, static load and dynamic load on the dynamic characteristics and instability regions of the sandwich beam are investigated. This work will find application in the passive and active vibration reduction of rotating sandwich structure using magnetorheological elastomer core, magnetic field and periodic axial load.

77 citations

Journal ArticleDOI
TL;DR: The present method is fully compact and fully higher-order accurate, and use of conjugate gradient and hybrid biconjugate gradient stabilized algorithms to solve the symmetric and nonsymmetric algebraic systems at every outer iteration, ensures good convergence behavior of the method even at higher Rayleigh numbers.
Abstract: The flow in a thermally driven square cavity with adiabatic top and bottom walls and differentially heated vertical walls for a wide range of Rayleigh numbers (10(3)< or =Ra< or =10(7)) has been computed with a fourth-order accurate higher-order compact scheme, which was used earlier only for the stream-function vorticity (psi-omega) form of the two-dimensional steady-state Navier-Stokes equations. The boundary conditions used are also compact and of identical accuracy. In particular, a compact fourth-order accurate Neumann boundary condition has been developed for temperature at the adiabatic walls. The treatment of the derivative source term is also compact and has been done in such a way as to give fourth-order accuracy and easy assimilation with the solution procedure. As the discretization for the psi-omega formulation, boundary conditions, and source term treatment are all fourth-order accurate, highly accurate solutions are obtained on relatively coarser grids. Unlike other compact solution procedure in literature for this physical configuration, the present method is fully compact and fully higher-order accurate. Also, use of conjugate gradient and hybrid biconjugate gradient stabilized algorithms to solve the symmetric and nonsymmetric algebraic systems at every outer iteration, ensures good convergence behavior of the method even at higher Rayleigh numbers.

77 citations

Journal ArticleDOI
TL;DR: In this paper, a finite-element simulation of the behavior of strip footings resting on sand beds, with different density of soil, reinforced with geocells of different dimensions, is presented.
Abstract: This paper presents the finite-element simulations of the behavior of strip footings resting on sand beds, with different density of soil, reinforced with geocells of different dimensions. The strength and stiffness of sand confined with geocells is represented by an equivalent composite model developed from triaxial compression tests. The additional confining pressure due to geocells, calculated using hoop tension theory, is used to obtain the apparent cohesive strength imparted to sand due to geocells. The elastic modulus of the geocell encased sand is related to the elastic modulus of the unreinforced sand and the tensile modulus of the geocell material using an empirical equation. Load-settlement response of strip footings on geocell reinforced sand beds obtained from the numerical simulations are compared with the corresponding experimental results and the match is found to be good. In addition, numerical results showed that with the provision of a geocell layer, the mobilized shear stress contours b...

77 citations

Journal ArticleDOI
TL;DR: In this paper, a comparative performance analysis of uniaxial and paste methods for the preparation of porosity and pore density was presented. But, there is no specific guideline for considering a particular method to obtain the desired membrane properties.

77 citations


Authors

Showing all 7128 results

NameH-indexPapersCitations
Jasvinder A. Singh1762382223370
Dipanwita Dutta1431651103866
Sanjay Gupta9990235039
Santosh Kumar80119629391
Subrata Ghosh7884132147
Rishi Raj7856922423
B. Bhuyan7365821275
Ravi Shankar6667219326
Ashutosh Sharma6657016100
Gautam Biswas6372116146
Sam P. de Visser6225613820
Surendra Nadh Somala6114428273
Manish Kumar61142521762
Mihir Kumar Purkait572679812
Ajaikumar B. Kunnumakkara5720120025
Network Information
Related Institutions (5)
Indian Institute of Technology Madras
36.4K papers, 590.4K citations

97% related

Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

97% related

Indian Institute of Technology Bombay
33.5K papers, 570.5K citations

97% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

96% related

Indian Institute of Technology Kanpur
28.6K papers, 576.8K citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023118
2022365
20212,032
20201,947
20191,866
20181,647