scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology Guwahati

EducationGuwahati, Assam, India
About: Indian Institute of Technology Guwahati is a education organization based out in Guwahati, Assam, India. It is known for research contribution in the topics: Adsorption & Catalysis. The organization has 6933 authors who have published 17102 publications receiving 257351 citations.


Papers
More filters
Journal ArticleDOI
Abstract: Water drops falling on a deep pool can either coalesce to form a vortex ring or splash, depending on the impact conditions. The transition between coalescence and splashing proceeds via a number of intermediate steps, such as thick and thin jet formation and gas-bubble entrapment. We perform simulations to determine the conditions under which bubble entrapment and jet formation occur. A regime map is established for Weber numbers ranging from 50 to 300 and Froude numbers from 25 to 600. Vortex ring formation is seen for all of the regimes; it is greater for the coalescence regime and less in the case of the thin jet regime.

114 citations

Journal ArticleDOI
TL;DR: Considering temperature, degradation rate and nitrogen transformation the amendment of 5% biochar is recommended for Hydrilla verticillata composting, and was found to be within recommended range from literature studies.

113 citations

Journal ArticleDOI
TL;DR: In this paper, sloshing wave analysis for baffled and un-baffled tanks was carried out based on volume of fluid (VOF) techniques with arbitrary-Lagrangian-Eulerian (ALE) formulation which adopts the displacement of solid, the pressure and displacement in the fluid as variables to model the coupled system.

113 citations

Journal ArticleDOI
TL;DR: In this article, the structural, optical and ferromagnetic properties of undoped and Fe-doped nanoribbons (NRbs) grown by a solvothermal method were investigated.
Abstract: We have investigated the structural, optical and ferromagnetic properties of undoped and Fe-doped TiO2 nanoribbons (NRbs) grown by a solvothermal method. A strong room temperature ferromagnetism (RTFM) is observed in both undoped and Fe-doped TiO2 NRbs. Fe-doped TiO2 NRbs exhibited a ∼4.8-fold enhancement in RTFM as compared to the undoped NRbs grown under similar conditions. However, the RTFM decreases at higher Fe concentration, possibly due to antiferromagnetic ordering between nearby Fe 3+ ions caused by a super exchange interaction. X-ray diffraction patterns reveal the pure TiO2(B) phase, the TiO2(B)–anatase mixed phase and the anatase–rutile mixed phase of the TiO2 structure. Field emission scanning electron microscopy and transmission electron microscopy observations reveal NRbs with uniform pore distribution and nanopits formed on the surface for both undoped and Fe-doped NRbs. These samples exhibit strong visible photoluminescence associated with oxygen vacancies and the ferromagnetic hysteresis loop, both of which are strongly enhanced after vacuum annealing. Optical absorption, electron spin resonance and x-ray photoelectron spectroscopic analyses are performed to elucidate the origin of RTFM. The observed RTFM in undoped and Fe-doped TiO2 NRbs is qualitatively explained through a model involving bound magnetic polarons, which include an electron locally trapped by an oxygen vacancy with the trapped electron occupying an orbital overlapping with the unpaired electron (3d 1 ) of aT i 3+ ion and/or the unpaired electron (3d 5 ) of aF e 3+ ion. The development of TiO2 NRbs with tunable optical and magnetic properties constitutes an important step towards realizing improved magneto-optical and spintronic devices from novel TiO2 nanostructures.

113 citations

Journal ArticleDOI
TL;DR: In this article, a general formulation of the governing transient radiative transfer equation applicable to a 3-D Cartesian enclosure has been presented, and formulations have been presented for the three commonly used methods in the study of radiative heat transfer, viz., the discrete transfer method, the discrete ordinate method and the finite volume method.

113 citations


Authors

Showing all 7128 results

NameH-indexPapersCitations
Jasvinder A. Singh1762382223370
Dipanwita Dutta1431651103866
Sanjay Gupta9990235039
Santosh Kumar80119629391
Subrata Ghosh7884132147
Rishi Raj7856922423
B. Bhuyan7365821275
Ravi Shankar6667219326
Ashutosh Sharma6657016100
Gautam Biswas6372116146
Sam P. de Visser6225613820
Surendra Nadh Somala6114428273
Manish Kumar61142521762
Mihir Kumar Purkait572679812
Ajaikumar B. Kunnumakkara5720120025
Network Information
Related Institutions (5)
Indian Institute of Technology Madras
36.4K papers, 590.4K citations

97% related

Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

97% related

Indian Institute of Technology Bombay
33.5K papers, 570.5K citations

97% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

96% related

Indian Institute of Technology Kanpur
28.6K papers, 576.8K citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023118
2022365
20212,032
20201,947
20191,866
20181,647