scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology Indore

EducationIndore, Madhya Pradesh, India
About: Indian Institute of Technology Indore is a education organization based out in Indore, Madhya Pradesh, India. It is known for research contribution in the topics: Fading & Support vector machine. The organization has 1606 authors who have published 4803 publications receiving 66500 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Experimental data suggestBiocompatibility and potential therapeutic applications of peptide hydrogel in inflammation and an Amoc (9-anthracenemethoxycarbonyl)-capped dipeptide-based biocompatible, injectable, thixotropic, and self-healable hydrogels.
Abstract: The growing area of biomaterial sciences has attracted broad attention in recent years in the development of peptide-based biocompatible materials with inherent therapeutic potentials. Here, we developed an Amoc (9-anthracenemethoxycarbonyl)-capped dipeptide-based biocompatible, injectable, thixotropic, and self-healable hydrogel. In vitro cytotoxicity of the hydrogel was investigated with the human embryonic kidney cell (HEK293) line. We observed that the synthesized peptide is noncytotoxic. The hydrogel showed an antibacterial efficacy against Gram-positive and Gram-negative bacteria. In vivo anti-inflammatory activity of the hydrogel was investigated using the rat air pouch model of acute inflammation. The major parameters considered for the anti-inflammatory study were exudate volume, total and differential white blood cell count, tissue histology, and lipid peroxidation assay. These experimental data suggest biocompatibility and potential therapeutic applications of peptide hydrogel in inflammation.

41 citations

Journal ArticleDOI
08 Mar 2014-Silicon
TL;DR: In this paper, a qualitative evolution of an asymmetric Raman line-shape function from a Lorentzian line shape is discussed for application in low dimensional semiconductors.
Abstract: A qualitative evolution of an asymmetric Raman line-shape function from a Lorentzian line-shape is discussed here for application in low dimensional semiconductors. The step-by-step evolution reported here is based on the phonon confinement model which is successfully used in literature to explain the asymmetric Raman line-shape from semiconductor nanostructures. Physical significance of different terms in the theoretical asymmetric Raman line-shape has been explained here. Better understanding of theoretical reasoning behind each term allows one to use the theoretical Raman line-shape without going into the details of theory from first principle. This will enable one to empirically derive a theoretical Raman line-shape function for any material if information about its phonon dispersion relation, size dependence, etc., is known.

41 citations

Journal ArticleDOI
Jaroslav Adam1, Dagmar Adamová2, Madan M. Aggarwal3, G. Aglieri Rinella4  +1019 moreInstitutions (95)
TL;DR: In this paper, the performance of the Bayesian approach for charged pions, kaons, protons, and D-0 mesons in the central barrel of ALICE is studied.
Abstract: We present a Bayesian approach to particle identification (PID) within the ALICE experiment. The aim is to more effectively combine the particle identification capabilities of its various detectors. After a brief explanation of the adopted methodology and formalism, the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE is studied. PID is performed via measurements of specific energy loss (dE/dx) and time of flight. PID efficiencies and misidentification probabilities are extracted and compared with Monte Carlo simulations using high-purity samples of identified particles in the decay channels K-S(0) -> pi(-)pi(+), phi -> K-K+, and A -> p pi(-) in p-Pb collisions at root sNN = 5.02 TeV. In order to thoroughly assess the validity of the Bayesian approach, this methodology was used to obtain corrected p(T) spectra of pions, kaons, protons, and D-0 mesons in pp collisions at root s = 7TeV. In all cases, the results using Bayesian PID were found to be consistent with previous measurements performed by ALICE using a standard PID approach. For the measurement of D-0 -> K-pi(+), it was found that a Bayesian PID approach gave a higher signal-to-background ratio and a similar or larger statistical significance when compared with standard PID selections, despite a reduced identification efficiency. Finally, we present an exploratory study of the measurement of A(c)(+) -> pK(-)pi(+) in pp collisions at root s = 7TeV, using the Bayesian approach for the identification of its decay products.

41 citations

Journal ArticleDOI
Jaroslav Adam1, Dagmar Adamová2, Madan M. Aggarwal3, G. Aglieri Rinella4  +976 moreInstitutions (100)
TL;DR: In this paper, the production of electrons from heavy-flavour hadron decays was measured as a function of transverse momentum (pT) in minimum-bias p-Pb collisions at √sNN = 5.02 TeV using the ALICE detector at the LHC.

41 citations

Journal ArticleDOI
TL;DR: In this article, a one dimensional mathematical model was proposed based on the Dubinin's Theory of Volume Filling of Micropores, and analyzed along with the unsteady heat transfer.

41 citations


Authors

Showing all 1738 results

NameH-indexPapersCitations
Raghunath Sahoo10655637588
Biswajeet Pradhan9873532900
A. Kumar9650533973
Franco Meddi8447624084
Manish Sharma82140733361
Anindya Roy5930114306
Krishna R. Reddy5840011076
Sudipan De549910774
Sudip Chakraborty513439319
Shaikh M. Mobin5151511467
Ashok Kumar5040510001
Ankhi Roy492598634
Aditya Nath Mishra491397607
Ram Bilas Pachori481828140
Pragati Sahoo471336535
Network Information
Related Institutions (5)
Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

95% related

Indian Institute of Science
62.4K papers, 1.2M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

Royal Institute of Technology
68.4K papers, 1.9M citations

90% related

University of Science and Technology of China
101K papers, 2.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202365
2022253
2021914
2020801
2019677
2018614