scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology Indore

EducationIndore, Madhya Pradesh, India
About: Indian Institute of Technology Indore is a education organization based out in Indore, Madhya Pradesh, India. It is known for research contribution in the topics: Fading & Support vector machine. The organization has 1606 authors who have published 4803 publications receiving 66500 citations.


Papers
More filters
Journal ArticleDOI
01 May 2021-Catena
TL;DR: In this article, the effect of soil moisture on the performance of conventional meteorological thresholds was investigated using a probabilistic approach, and the results showed that when the antecedent moisture content in soil is less, only severe rainfall events can trigger landslides in the study area; while less severe rain events can also trigger landslide when the soil is wet.
Abstract: Landslides triggered by heavy rains are increasing in number and creating severe losses in hilly regions across the world. Rainfall thresholds on regional and local-scales are being used for forecasting such events, for efficient early warning. Empirical and probabilistic approaches for defining rainfall thresholds are traditional tools which are being used as part of the forecasting system for rainfall induced landslides. Such methods are easy-to-use and are based on statistical analyses. They can be derived without looking into the complex hydro-geological processes involved in slope failures, but are often associated with the disadvantage of higher false alarms, limiting their applications in a regional landslide early warning system (LEWS). This study is an attempt to improve the performance of conventional meteorological thresholds by considering the effect of soil moisture, using a probabilistic approach. Idukki district in southern part of India is highly susceptible to landslides and has witnessed major socio-economical setbacks in the recent disasters happened in 2018 and 2019. This tourist hub is now in need of a landslide forecasting system, which can help in landslide risk reduction. This study attempts to understand the effect of averaged soil moisture estimates derived from passive microwave remote sensing data, for improving the performance of conventional empirical and probabilistic thresholds. For defining empirical thresholds, an algorithm-based approach such as Calculation of Thresholds for Rainfall-induced Landslides Tool (CTRL-T) has been used. Probabilistic thresholds were defined using a Bayesian approach, finding the posterior probability of occurrence using the marginal and conditional probabilities of the control parameters along with the prior probability of occurrence of landslide. The derived rainfall thresholds were quantitatively compared with the Bayesian probabilistic threshold derived using rainfall severity and soil wetness using an area under the curve (AUC) based on receiver operating characteristics (ROC) curve method. The results show that when the antecedent moisture content in soil is less, only severe rainfall events can trigger landslides in the study area; while less severe rainfall events can also trigger landslides when the soil is wet. The role of soil wetness in the initiation is used to improve the performance of the conventional methods, and a ROC approach was used for the statistical comparison of different models. Further, the results indicated that the probabilistic threshold using rainfall severity and soil wetness outperformed the conventional approaches with AUC of 0.96, being the most sensitive and specific among the models considered. This result opens new promising perspectives for the development of an operational LEWS in the Idukki district based on a combination of rainfall and soil moisture data. Moreover, this work contributes to strengthen the advancing trend of hydro-meteorological thresholds based on soil moisture, which is gaining a growing attention in landslide studies and that, to date, was lacking evidences in monsoon regions.

31 citations

Journal ArticleDOI
21 Sep 2020
TL;DR: In this article, the CaTiO3 pyramids were applied as an electrode modifier to develop an electrochemical sensor to determine urea using the cyclic voltammetry and I-V techniques.
Abstract: Herein, we report novel CaTiO3 pyramids, prepared by a hydrothermal approach using calcium nitrate and titanium butoxide in the presence of sodium hydroxide. The physio-chemical properties of the synthesized CaTiO3 pyramids were probed by PXRD, FTIR, BET, SEM and EDX. The synthesized CaTiO3 pyramids possess a good specific surface area which is beneficial for electrochemical applications. Thus, the CaTiO3 pyramids were applied as an electrode modifier to develop an electrochemical sensor. The working surface area of the glassy carbon (GC) electrode was fabricated with CaTiO3 pyramids using the drop casting method. This fabricated electrode was employed to determine urea using the cyclic voltammetry and I–V techniques. The fabricated electrode exhibited a good detection limit of 1.6 μM.

31 citations

Journal ArticleDOI
TL;DR: In this paper, a new experimental technique is designed to measure the mesh stiffness of a given gear pair, which is important for understanding the dynamics of gearboxes, and the results of the experiment are found having a good match with that obtained from the FE method.

31 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive characterization of different industrial ashes is necessary to clearly define the chemical characteristics that have influencing role on the lime-based fly ash bricks, including their mineralogy, particle morphology, and lime reactivity.

31 citations

Journal ArticleDOI
TL;DR: The reaction kinetics of metal hydride pairs consisting of La09Ce01Ni5, La08Ce02Ni5 and LaNi47Al03 were measured at different temperatures to determine their suitability for MHCSs.

31 citations


Authors

Showing all 1738 results

NameH-indexPapersCitations
Raghunath Sahoo10655637588
Biswajeet Pradhan9873532900
A. Kumar9650533973
Franco Meddi8447624084
Manish Sharma82140733361
Anindya Roy5930114306
Krishna R. Reddy5840011076
Sudipan De549910774
Sudip Chakraborty513439319
Shaikh M. Mobin5151511467
Ashok Kumar5040510001
Ankhi Roy492598634
Aditya Nath Mishra491397607
Ram Bilas Pachori481828140
Pragati Sahoo471336535
Network Information
Related Institutions (5)
Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

95% related

Indian Institute of Science
62.4K papers, 1.2M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

Royal Institute of Technology
68.4K papers, 1.9M citations

90% related

University of Science and Technology of China
101K papers, 2.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202365
2022253
2021914
2020801
2019677
2018614