scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology Indore

EducationIndore, Madhya Pradesh, India
About: Indian Institute of Technology Indore is a education organization based out in Indore, Madhya Pradesh, India. It is known for research contribution in the topics: Fading & Support vector machine. The organization has 1606 authors who have published 4803 publications receiving 66500 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This review article focuses on the applications of nanocarrier-based vaccine formulations and the strategies used for the functionalization of nanoparticles to accomplish efficient delivery of vaccines in order to induce desired host immunity against infectious diseases.
Abstract: Due to emergence of new variants of pathogenic micro-organisms the treatment and immunization of infectious diseases have become a great challenge in the past few years. In the context of vaccine development remarkable efforts have been made to develop new vaccines and also to improve the efficacy of existing vaccines against specific diseases. To date, some vaccines are developed from protein subunits or killed pathogens, whilst several vaccines are based on live-attenuated organisms, which carry the risk of regaining their pathogenicity under certain immunocompromised conditions. To avoid this, the development of risk-free effective vaccines in conjunction with adequate delivery systems are considered as an imperative need to obtain desired humoral and cell-mediated immunity against infectious diseases. In the last several years, the use of nanoparticle-based vaccines has received a great attention to improve vaccine efficacy, immunization strategies, and targeted delivery to achieve desired immune responses at the cellular level. To improve vaccine efficacy, these nanocarriers should protect the antigens from premature proteolytic degradation, facilitate antigen uptake and processing by antigen presenting cells, control release, and should be safe for human use. Nanocarriers composed of lipids, proteins, metals or polymers have already been used to attain some of these attributes. In this context, several physico-chemical properties of nanoparticles play an important role in the determination of vaccine efficacy. This review article focuses on the applications of nanocarrier-based vaccine formulations and the strategies used for the functionalization of nanoparticles to accomplish efficient delivery of vaccines in order to induce desired host immunity against infectious diseases.

309 citations

Journal ArticleDOI
TL;DR: It appears that a system is in place to assist clinicians to diagnose seizures accurately in less time as the proposed model achieves perfect 100% classification sensitivity and is found to be outperforming all existing models in terms of classification sensitivity (CSE).

308 citations

Journal ArticleDOI
TL;DR: By combining biocatalysis and molecular self-assembly, supramolecular gels have shown the ability to more quickly access higher-ordered structures by simply increasing enzyme concentration, and gels that assembled faster showed fewer defects.
Abstract: Supramolecular gels, which demonstrate tunable functionalities, have attracted much interest in a range of areas, including healthcare, environmental protection and energy-related technologies. Preparing these materials in a reliable manner is challenging, with an increased level of kinetic defects observed at higher self-assembly rates. Here, by combining biocatalysis and molecular self-assembly, we have shown the ability to more quickly access higher-ordered structures. By simply increasing enzyme concentration, supramolecular order expressed at molecular, nano- and micro-levels is dramatically enhanced, and, importantly, the gelator concentrations remain identical. Amphiphile molecules were prepared by attaching an aromatic moiety to a dipeptide backbone capped with a methyl ester. Their self-assembly was induced by an enzyme that hydrolysed the ester. Different enzyme concentrations altered the catalytic activity and size of the enzyme clusters, affecting their mobility. This allowed structurally diverse materials that represent local minima in the free energy landscape to be accessed based on a single gelator structure.

296 citations

Journal ArticleDOI
TL;DR: Efficient detection of epileptic seizure is achieved when seizure events appear for long duration in hours long EEG recordings and the proposed method develops time–frequency plane for multivariate signals and builds patient-specific models for EEG seizure detection.
Abstract: Objective : This paper investigates the multivariate oscillatory nature of electroencephalogram (EEG) signals in adaptive frequency scales for epileptic seizure detection. Methods : The empirical wavelet transform (EWT) has been explored for the multivariate signals in order to determine the joint instantaneous amplitudes and frequencies in signal adaptive frequency scales. The proposed multivariate extension of EWT has been studied on multivariate multicomponent synthetic signal, as well as on multivariate EEG signals of Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) scalp EEG database. In a moving-window-based analysis, 2-s-duration multivariate EEG signal epochs containing five automatically selected channels have been decomposed and three features have been extracted from each 1-s part of the 2-s-duration joint instantaneous amplitudes of multivariate EEG signals. The extracted features from each oscillatory level have been processed using a proposed feature processing step and joint features have been computed in order to achieve better discrimination of seizure and seizure-free EEG signal epochs. Results : The proposed detection method has been evaluated over 177 h of EEG records using six classifiers. We have achieved average sensitivity, specificity, and accuracy values as 97.91%, 99.57%, and 99.41%, respectively, using tenfold cross-validation method, which are higher than the compared state of art methods studied on this database. Conclusion : Efficient detection of epileptic seizure is achieved when seizure events appear for long duration in hours long EEG recordings. Significance : The proposed method develops time–frequency plane for multivariate signals and builds patient-specific models for EEG seizure detection.

291 citations

Journal ArticleDOI
T. O. Ablyazimov1, A. Abuhoza, R. P. Adak2, M. Adamczyk3  +599 moreInstitutions (50)
TL;DR: The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates.
Abstract: Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 ( $\sqrt{s_{NN}}=$ 2.7--4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( $\mu_B > 500$ MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.

279 citations


Authors

Showing all 1738 results

NameH-indexPapersCitations
Raghunath Sahoo10655637588
Biswajeet Pradhan9873532900
A. Kumar9650533973
Franco Meddi8447624084
Manish Sharma82140733361
Anindya Roy5930114306
Krishna R. Reddy5840011076
Sudipan De549910774
Sudip Chakraborty513439319
Shaikh M. Mobin5151511467
Ashok Kumar5040510001
Ankhi Roy492598634
Aditya Nath Mishra491397607
Ram Bilas Pachori481828140
Pragati Sahoo471336535
Network Information
Related Institutions (5)
Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

95% related

Indian Institute of Science
62.4K papers, 1.2M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

Royal Institute of Technology
68.4K papers, 1.9M citations

90% related

University of Science and Technology of China
101K papers, 2.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202365
2022253
2021914
2020801
2019677
2018614