scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology Indore

EducationIndore, Madhya Pradesh, India
About: Indian Institute of Technology Indore is a education organization based out in Indore, Madhya Pradesh, India. It is known for research contribution in the topics: Fading & Support vector machine. The organization has 1606 authors who have published 4803 publications receiving 66500 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A joint power and code-domain non-orthogonal multiple access technique for the fifth-generation (5G) wireless networks and beyond and a downlink system, where the users’ experience diverse channel conditions, is considered.
Abstract: In this letter, we propose a joint power and code-domain non-orthogonal multiple access (NOMA) technique for the fifth-generation (5G) wireless networks and beyond. We consider a downlink system, where the users’ experience diverse channel conditions. The transmitter involves a sparse code multiple access (SCMA) encoder and allows diversity in power allocation to the users. The detection is based on combined message-passing and successive-interference-cancellation algorithms. Simulation results demonstrate that the proposed NOMA system achieves higher spectral efficiency than the conventional single power-domain NOMA- and SCMA-based systems.

54 citations

Journal ArticleDOI
TL;DR: Abrasive flow finishing (AFF) is an advanced nano-finishing process using abrasive-laden self-deformable putty for finishing, deburring, radiusing, chamfering, stress-relieving, and mirror-like polishing of the complicated components and inaccessible areas which are difficult or impossible to finish by other processes.
Abstract: Abrasive flow finishing (AFF) is an advanced nano-finishing process using abrasive-laden self-deformable putty for finishing, deburring, radiusing, chamfering, stress-relieving, and mirror-like polishing of the complicated components and inaccessible areas which are difficult or impossible to finish by other processes. Since its inception during 1950s, continuous research and advances in AFF are being reported globally. This paper presents comprehensive and critical review of the past research and developments on process modeling, rheological characterization of the AFF medium, development of finishing medium, development of various hybrid, derived, and hybrid-derived processes of AFF, and some novel applications of AFF for complicated shapes and difficult-to-finish materials. Major findings and observations, details of the workpiece material, finishing medium, process parameters, and responses have been presented in a tabular format for quick reference. It also covers some novel applications of AFF in the field of avionics, automobiles, biomedical, gears, additive manufacturing, cutting tool inserts, die and mold manufacturing, and recast layer removal. Finishing results for various materials such as mild steel, brass, aluminum, and its alloys, tool steel, copper, metal matrix composite, and photopolymer resin are also included. It also identifies directions for future research and provides an invaluable list of literature on past research works on AFF process. This review article will be very useful for the researchers working in micro- and nano-finishing applications and the industries involved in manufacturing of the automobiles, aero-engines, avionics components, biomedical implants, gears, impellers, dies and molds, and defense equipment.

54 citations

Journal ArticleDOI
TL;DR: A wide range of functionality of CHIP inside cells is explored by a detailed presentation of its co-chaperone, E3 and E4 enzyme like functions, with central focus on its protein quality control roles in neurodegenerative diseases.
Abstract: Cells regularly synthesize new proteins to replace old and abnormal proteins for normal cellular functions. Two significant protein quality control pathways inside the cellular milieu are ubiquitin proteasome system (UPS) and autophagy. Autophagy is known for bulk clearance of cytoplasmic aggregated proteins, whereas the specificity of protein degradation by UPS comes from E3 ubiquitin ligases. Few E3 ubiquitin ligases, like C-terminus of Hsc70-interacting protein (CHIP) not only take part in protein quality control pathways, but also plays a key regulatory role in other cellular processes like signaling, development, DNA damage repair, immunity, and ageing. CHIP targets misfolded proteins for their degradation through proteasome, as well as autophagy; simultaneously, with help of chaperones, it also regulates folding attempts for misfolded proteins. The broad range of CHIP substrates and their association with multiple pathologies makes it a key molecule to work upon and focus for future therapeutic intervention. E3 ubiquitin ligase CHIP interacts and degrades many protein inclusions formed in neurodegenerative diseases. The presence of CHIP at various nodes of cellular protein-protein interaction network presents this molecule as a potential candidate for further research. In this review, we have explored a wide range of functionality of CHIP inside the cell by a detailed presentation of its co-chaperone, E3 and E4 enzyme like functions, with central focus on its protein quality control roles in neurodegenerative diseases. We have also raised many unexplored but expected fundamental questions regarding CHIP functions, which generate hopes for its future applications in research, as well as drug discovery.

54 citations

Journal ArticleDOI
TL;DR: In this paper, the feasibility of lithium-and sodium-aluminum hydrides with emphasis on their thermodynamic and thermo-physical properties is discussed and a wide variety of materials such as intermetallics, physisorbents, complex hydride/alanates, metal organic frameworks have been investigated as possible storage media.

54 citations

Journal ArticleDOI
TL;DR: In this article, the heavy metal adsorption on these membranes from aqueous solutions was studied in equilibrium in the batch experiments, as well as under the throughflow conditions, and the results revealed attractive capabilities of these inexpensive nano-textured biopolymer adsorbents formed from waste materials using the process scalable to the industrial level.

54 citations


Authors

Showing all 1738 results

NameH-indexPapersCitations
Raghunath Sahoo10655637588
Biswajeet Pradhan9873532900
A. Kumar9650533973
Franco Meddi8447624084
Manish Sharma82140733361
Anindya Roy5930114306
Krishna R. Reddy5840011076
Sudipan De549910774
Sudip Chakraborty513439319
Shaikh M. Mobin5151511467
Ashok Kumar5040510001
Ankhi Roy492598634
Aditya Nath Mishra491397607
Ram Bilas Pachori481828140
Pragati Sahoo471336535
Network Information
Related Institutions (5)
Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

95% related

Indian Institute of Science
62.4K papers, 1.2M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

Royal Institute of Technology
68.4K papers, 1.9M citations

90% related

University of Science and Technology of China
101K papers, 2.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202365
2022253
2021914
2020801
2019677
2018614