Institution
Indian Institute of Technology Kharagpur
Education•Kharagpur, India•
About: Indian Institute of Technology Kharagpur is a(n) education organization based out in Kharagpur, India. It is known for research contribution in the topic(s): Natural rubber & Dielectric. The organization has 16887 authors who have published 38658 publication(s) receiving 714526 citation(s).
Topics: Natural rubber, Dielectric, Microstructure, Population, Heat transfer
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes.
For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy.
Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.
4,756 citations
[...]
TL;DR: This review presents an overview of the electrospinning technique with its promising advantages and potential applications, and focuses on varied applications of electrospun fibers in different fields.
Abstract: With the emergence of nanotechnology, researchers become more interested in studying the unique properties of nanoscale materials. Electrospinning, an electrostatic fiber fabrication technique has evinced more interest and attention in recent years due to its versatility and potential for applications in diverse fields. The notable applications include in tissue engineering, biosensors, filtration, wound dressings, drug delivery, and enzyme immobilization. The nanoscale fibers are generated by the application of strong electric field on polymer solution or melt. The non-wovens nanofibrous mats produced by this technique mimics extracellular matrix components much closely as compared to the conventional techniques. The sub-micron range spun fibers produced by this process, offer various advantages like high surface area to volume ratio, tunable porosity and the ability to manipulate nanofiber composition in order to get desired properties and function. Over the years, more than 200 polymers have been electropun for various applications and the number is still increasing gradually with time. With these in perspectives, we aim to present in this review, an overview of the electrospinning technique with its promising advantages and potential applications. We have discussed the electrospinning theory, spinnable polymers, parameters (solution and processing), which significantly affect the fiber morphology, solvent properties and melt electrospinning (alternative to solution electrospinning). Finally, we have focused on varied applications of electrospun fibers in different fields and concluded with the future prospects of this efficient technology.
3,275 citations
[...]
TL;DR: This paper presents a meta-analysis of four-Wave Mixing and its applications in nanofiltration, which shows clear trends in high-performance liquid chromatography and also investigates the role of nano-magnifying lens technology in this process.
Abstract: 12.2.2. Four-Wave Mixing (FWM) 4849 12.2.3. Dye Aggregation 4850 12.2.4. Optoelectronic Nanodevices 4850 12.3. Sensor 4851 12.3.1. Chemical Sensor 4851 12.3.2. Biological Sensor 4851 12.4. Catalysis 4852 13. Conclusion and Perspectives 4852 14. Abbreviations 4853 15. Acknowledgements 4854 16. References 4854 * Corresponding author E-mail: tpal@chem.iitkgp.ernet.in. † Raidighi College. § Indian Institute of Technology. 4797 Chem. Rev. 2007, 107, 4797−4862
2,188 citations
[...]
TL;DR: The authors define equality of two soft sets, subset and super set of a soft set, complement of asoft set, null soft set and absolute soft set with examples and De Morgan's laws and a number of results are verified in soft set theory.
Abstract: In this paper, the authors study the theory of soft sets initiated by Molodtsov. The authors define equality of two soft sets, subset and super set of a soft set, complement of a soft set, null soft set, and absolute soft set with examples. Soft binary operations like AND, OR and also the operations of union, intersection are defined. De Morgan's laws and a number of results are verified in soft set theory.
1,818 citations
[...]
TL;DR: The paper presents a survey of biological hydrogen production processes, and the microorganisms and biochemical pathways involved in hydrogen generation processes are presented in some detail.
Abstract: Hydrogen is the fuel of the future mainly due to its high conversion efficiency, recyclability and nonpolluting nature. Biological hydrogen production processes are found to be more environment friendly and less energy intensive as compared to thermochemical and electrochemical processes. They are mostly controlled by either photosynthetic or fermentative organisms. Till today, more emphasis has been given on the former processes. Nitrogenase and hydrogenase play very important role. Genetic manipulation of cyanobacteria (hydrogenase negative gene) improves the hydrogen generation. The paper presents a survey of biological hydrogen production processes. The microorganisms and biochemical pathways involved in hydrogen generation processes are presented in some detail. Several developmental works are discussed. Immobilized system is found suitable for the continuous hydrogen production. About 28% of energy can be recovered in the form of hydrogen using sucrose as substrate. Fermentative hydrogen production processes have some edge over the other biological processes.
1,805 citations
Authors
Showing all 16887 results
Name | H-index | Papers | Citations |
---|---|---|---|
Rajdeep Mohan Chatterjee | 110 | 990 | 51407 |
Vijay P. Singh | 106 | 1699 | 55831 |
Arun Majumdar | 102 | 459 | 52464 |
Sanjay Gupta | 99 | 902 | 35039 |
Biswajeet Pradhan | 98 | 735 | 32900 |
Sandeep Kumar | 94 | 1563 | 38652 |
Jürgen Eckert | 92 | 1368 | 42119 |
Praveen Kumar | 88 | 1339 | 35718 |
Tuan Vo-Dinh | 86 | 698 | 24690 |
Lawrence Carin | 84 | 949 | 31928 |
Anindya Dutta | 82 | 248 | 33619 |
Aniruddha B. Pandit | 80 | 427 | 22552 |
Krishnendu Chakrabarty | 79 | 996 | 27583 |
Ramesh Jain | 78 | 556 | 37037 |
Thomas Thundat | 78 | 622 | 22684 |