scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Tropical Meteorology

FacilityPune, India
About: Indian Institute of Tropical Meteorology is a facility organization based out in Pune, India. It is known for research contribution in the topics: Monsoon & Aerosol. The organization has 1321 authors who have published 2815 publications receiving 70000 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A suite of climate change indices derived from daily temperature and precipitation data, with a primary focus on extreme events, were computed and analyzed as discussed by the authors, and the results showed widespread significant changes in temperature extremes associated with warming.
Abstract: A suite of climate change indices derived from daily temperature and precipitation data, with a primary focus on extreme events, were computed and analyzed. By setting an exact formula for each index and using specially designed software, analyses done in different countries have been combined seamlessly. This has enabled the presentation of the most up-to-date and comprehensive global picture of trends in extreme temperature and precipitation indices using results from a number of workshops held in data-sparse regions and high-quality station data supplied by numerous scientists world wide. Seasonal and annual indices for the period 1951-2003 were gridded. Trends in the gridded fields were computed and tested for statistical significance. Results showed widespread significant changes in temperature extremes associated with warming, especially for those indices derived from daily minimum temperature. Over 70% of the global land area sampled showed a significant decrease in the annual occurrence of cold nights and a significant increase in the annual occurrence of warm nights. Some regions experienced a more than doubling of these indices. This implies a positive shift in the distribution of daily minimum temperature throughout the globe. Daily maximum temperature indices showed similar changes but with smaller magnitudes. Precipitation changes showed a widespread and significant increase, but the changes are much less spatially coherent compared with temperature change. Probability distributions of indices derived from approximately 200 temperature and 600 precipitation stations, with near-complete data for 1901-2003 and covering a very large region of the Northern Hemisphere midlatitudes (and parts of Australia for precipitation) were analyzed for the periods 1901-1950, 1951-1978 and 1979-2003. Results indicate a significant warming throughout the 20th century. Differences in temperature indices distributions are particularly pronounced between the most recent two periods and for those indices related to minimum temperature. An analysis of those indices for which seasonal time series are available shows that these changes occur for all seasons although they are generally least pronounced for September to November. Precipitation indices show a tendency toward wetter conditions throughout the 20th century.

3,722 citations

Journal ArticleDOI
01 Dec 2006-Science
TL;DR: A substantial increase in hazards related to heavy rain is expected over central India in the future as a result of rising global surface temperature and significant rising trends in the frequency and the magnitude of extreme rain events are shown.
Abstract: Against a backdrop of rising global surface temperature, the stability of the Indian monsoon rainfall over the past century has been a puzzle By using a daily rainfall data set, we show (i) significant rising trends in the frequency and the magnitude of extreme rain events and (ii) a significant decreasing trend in the frequency of moderate events over central India during the monsoon seasons from 1951 to 2000 The seasonal mean rainfall does not show a significant trend, because the contribution from increasing heavy events is offset by decreasing moderate events A substantial increase in hazards related to heavy rain is expected over central India in the future

1,634 citations

Journal ArticleDOI
Moinuddin Ahmed1, Kevin J. Anchukaitis2, Kevin J. Anchukaitis3, Asfawossen Asrat4, H. P. Borgaonkar5, Martina Braida6, Brendan M. Buckley3, Ulf Büntgen7, Brian M. Chase8, Brian M. Chase9, Duncan A. Christie10, Duncan A. Christie11, Edward R. Cook3, Mark A. J. Curran12, Mark A. J. Curran13, Henry F. Diaz14, Jan Esper15, Ze-Xin Fan16, Narayan Prasad Gaire17, Quansheng Ge18, Joelle Gergis19, J. Fidel González-Rouco20, Hugues Goosse21, Stefan W. Grab22, Nicholas E. Graham23, Rochelle Graham23, Martin Grosjean24, Sami Hanhijärvi25, Darrell S. Kaufman26, Thorsten Kiefer, Katsuhiko Kimura27, Atte Korhola25, Paul J. Krusic28, Antonio Lara10, Antonio Lara11, Anne-Marie Lézine29, Fredrik Charpentier Ljungqvist28, Andrew Lorrey30, Jürg Luterbacher31, Valérie Masson-Delmotte29, Danny McCarroll32, Joseph R. McConnell33, Nicholas P. McKay26, Mariano S. Morales34, Andrew D. Moy13, Andrew D. Moy12, Robert Mulvaney35, Ignacio A. Mundo34, Takeshi Nakatsuka36, David J. Nash37, David J. Nash22, Raphael Neukom7, Sharon E. Nicholson38, Hans Oerter39, Jonathan G. Palmer40, Jonathan G. Palmer41, Steven J. Phipps40, María Prieto32, Andrés Rivera42, Masaki Sano36, Mirko Severi43, Timothy M. Shanahan44, Xuemei Shao18, Feng Shi, Michael Sigl33, Jason E. Smerdon3, Olga Solomina45, Eric J. Steig46, Barbara Stenni6, Meloth Thamban47, Valerie Trouet48, Chris S. M. Turney40, Mohammed Umer4, Tas van Ommen13, Tas van Ommen12, Dirk Verschuren49, A. E. Viau50, Ricardo Villalba34, Bo Møllesøe Vinther51, Lucien von Gunten, Sebastian Wagner, Eugene R. Wahl14, Heinz Wanner24, Johannes P. Werner31, James W. C. White52, Koh Yasue53, Eduardo Zorita 
Federal Urdu University1, Woods Hole Oceanographic Institution2, Columbia University3, Addis Ababa University4, Indian Institute of Tropical Meteorology5, University of Trieste6, Swiss Federal Institute for Forest, Snow and Landscape Research7, University of Bergen8, University of Montpellier9, Austral University of Chile10, University of Chile11, Australian Antarctic Division12, University of Tasmania13, National Oceanic and Atmospheric Administration14, University of Mainz15, Xishuangbanna Tropical Botanical Garden16, Nepal Academy of Science and Technology17, Chinese Academy of Sciences18, University of Melbourne19, Complutense University of Madrid20, Université catholique de Louvain21, University of the Witwatersrand22, Hydrologic Research Center23, University of Bern24, University of Helsinki25, Northern Arizona University26, Fukushima University27, Stockholm University28, Université Paris-Saclay29, National Institute of Water and Atmospheric Research30, University of Giessen31, Swansea University32, Desert Research Institute33, National Scientific and Technical Research Council34, British Antarctic Survey35, Nagoya University36, University of Brighton37, Florida State University38, Alfred Wegener Institute for Polar and Marine Research39, University of New South Wales40, University of Exeter41, Centro de Estudios Científicos42, University of Florence43, University of Texas at Austin44, Russian Academy of Sciences45, University of Washington46, National Centre for Antarctic and Ocean Research47, University of Arizona48, Ghent University49, University of Ottawa50, University of Copenhagen51, University of Colorado Boulder52, Shinshu University53
TL;DR: The authors reconstructed past temperatures for seven continental-scale regions during the past one to two millennia and found that the most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century.
Abstract: Past global climate changes had strong regional expression To elucidate their spatio-temporal pattern, we reconstructed past temperatures for seven continental-scale regions during the past one to two millennia The most coherent feature in nearly all of the regional temperature reconstructions is a long-term cooling trend, which ended late in the nineteenth century At multi-decadal to centennial scales, temperature variability shows distinctly different regional patterns, with more similarity within each hemisphere than between them There were no globally synchronous multi-decadal warm or cold intervals that define a worldwide Medieval Warm Period or Little Ice Age, but all reconstructions show generally cold conditions between ad 1580 and 1880, punctuated in some regions by warm decades during the eighteenth century The transition to these colder conditions occurred earlier in the Arctic, Europe and Asia than in North America or the Southern Hemisphere regions Recent warming reversed the long-term cooling; during the period ad 1971–2000, the area-weighted average reconstructed temperature was higher than any other time in nearly 1,400 years

885 citations

Journal ArticleDOI
TL;DR: The daily variation of the maximum cloud zone (MCZ) and the 7W mb trough in the Northern Hemisphere over the Indian longitudes 70-90°E during April-October for 1973-77 as mentioned in this paper.
Abstract: An investigation is presented of the daily variation of the maximum cloud zone (MCZ) and the 7W mb trough in the Northern Hemisphere over the Indian longitudes 70–90°E during April–October for 1973–77. It is found that during June–September there are two favorable locations for a MCZ over these longitudes–on a majority of days the MCZ is present in the monsoon zone north of 15°N, and often a secondary MCZ occurs in the equatorial region (0–10°N). The monsoon MCZ gets established by northward movement of the MCZ occurring over the equatorial Indian ocean in April and May. The secondary MCZ appears intermittently, and is characterized by long spells of persistence only when the monsoon MCZ is absent. In each of the seasons studied, the MCZ temporarily disappeared from the mean summer monsoon location (15–28°N) about four weeks after it was established near the beginning of July. It is reestablished by the northward movement of the secondary MCZ, which becomes active during the absence of the monsoo...

811 citations

Journal ArticleDOI
TL;DR: In this paper, a long homogeneous rainfall series of All-India (India taken as one unit) has been prepared based on a fixed and well distributed network of 306 raingauge stations over India by giving proper area-weightage.
Abstract: The Indian rainfall has often been used as a proxy data for the Asian monsoon as a whole for understanding the energy budget of the major circulation features and also used as an input parameter in estimating the other regional parameters. In view of this, a long homogeneous rainfall series of All-India (India taken as one unit) has been prepared based on a fixed and well distributed network of 306 raingauge stations over India by giving proper area-weightage. This paper contains a listing of All-India monthly, seasonal and annual homogeneous data series for the period 1871–1993. Some statistical details and long-term changes of the All-India monsoon rainfall have been discussed.

711 citations


Authors

Showing all 1350 results

NameH-indexPapersCitations
Bhupendra Nath Goswami5519415937
Swadhin K. Behera4819611739
M. Rajeevan461649115
Shamil Maksyutov452059483
Bruce D. Cornuelle442367143
Suresh Tiwari441415352
Gufran Beig392005416
Jyoti P. Jadhav391465172
Abhishek Gupta384226928
Sulochana Gadgil37807119
Raghavan Krishnan371084033
Atul Srivastava362615087
M. Ravichandran341194281
Suryachandra A. Rao33665602
Karumuri Ashok32767374
Network Information
Related Institutions (5)
National Center for Atmospheric Research
19.7K papers, 1.4M citations

89% related

Geophysical Fluid Dynamics Laboratory
2.4K papers, 264.5K citations

89% related

Met Office
8.5K papers, 463.7K citations

88% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

88% related

National Oceanic and Atmospheric Administration
30.1K papers, 1.5M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202335
202242
2021281
2020195
2019203
2018132