scispace - formally typeset
Search or ask a question
Institution

Indiana University

EducationBloomington, Indiana, United States
About: Indiana University is a education organization based out in Bloomington, Indiana, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 64480 authors who have published 150058 publications receiving 6392902 citations. The organization is also known as: Indiana University system & indiana.edu.


Papers
More filters
Journal ArticleDOI
TL;DR: Forest transitions have occurred in two, sometimes overlapping circumstances: economic development and scarcity of forest products have prompted governments and landowners to plant trees in some fields as mentioned in this paper, and these transitions do little to conserve biodiversity, but they do sequester carbon and conserve soil, so governments should place a high priority on promoting them.
Abstract: Places experience forest transitions when declines in forest cover cease and recoveries in forest cover begin. Forest transitions have occurred in two, sometimes overlapping circumstances. In some places economic development has created enough non-farm jobs to pull farmers off of the land, thereby inducing the spontaneous regeneration of forests in old fields. In other places a scarcity of forest products has prompted governments and landowners to plant trees in some fields. The transitions do little to conserve biodiversity, but they do sequester carbon and conserve soil, so governments should place a high priority on promoting them. C 2005 Elsevier Ltd. All rights reserved.

1,278 citations

Journal ArticleDOI
TL;DR: Overall, intriguing interconnections among intrinsic disorder, cell signaling, and human diseases suggest that protein conformational diseases may result not only from protein misfolding, but also from misidentification, missignaling, and unnatural or nonnative folding.
Abstract: Intrinsically disordered proteins (IDPs) lack stable tertiary and/or secondary structures under physiological conditions in vitro. They are highly abundant in nature and their functional repertoire complements the functions of ordered proteins. IDPs are involved in regulation, signaling, and control, where binding to multiple partners and high-specificity/low-affinity interactions play a crucial role. Functions of IDPs are tuned via alternative splicing and posttranslational modifications. Intrinsic disorder is a unique structural feature that enables IDPs to participate in both one-to-many and many-toone signaling. Numerous IDPs are associated with human diseases, including cancer, cardiovascular disease, amyloidoses, neurodegenerative diseases, and diabetes. Overall, intriguing interconnections among intrinsic disorder, cell signaling, and human diseases suggest that protein conformational diseases may result not only from protein misfolding, but also from misidentification, missignaling, and unnatural or nonnative folding. IDPs, such as α-synuclein, tau protein, p53, and BRCA1, are attractive targets for drugs modulating protein-protein interactions. From these and other examples, novel strategies for drug discovery based on IDPs have been developed. To summarize work in this area, we are introducing the D 2 (disorder in disorders) concept.

1,277 citations

Journal ArticleDOI
TL;DR: The successful completion of most tasks involving more than one individual requires both conveyance and convergence processes, thus communication performance will be improved when individuals use a variety of media to perform a task, rather than just one medium.
Abstract: This paper expands, refines, and explicates media synchronicity theory, originally proposed in a conference proceeding in 1999 (Dennis and Valacich 1999). Media synchronicity theory (MST) focuses on the ability of media to support synchronicity, a shared pattern of coordinated behavior among individuals as they work together. We expand on the original propositions of MST to argue that communication is composed of two primary processes: conveyance and convergence. The familiarity of individuals with the tasks they are performing and with their coworkers will also affect the relative amounts of these two processes. Media synchronicity theory proposes that for conveyance processes, use of media supporting lower synchronicity should result in better communication performance. For convergence processes, use of media supporting higher synchronicity should result in better communication performance. We identify five capabilities of media (symbol sets, parallelism, transmission velocity, rehearsability, and reprocessability) that influence the development of synchronicity and thus the successful performance of conveyance and convergence communication processes. The successful completion of most tasks involving more than one individual requires both conveyance and convergence processes, thus communication performance will be improved when individuals use a variety of media to perform a task, rather than just one medium.

1,275 citations

Journal ArticleDOI
Stephen Richards1, Richard A. Gibbs1, Nicole M. Gerardo2, Nancy A. Moran3  +220 moreInstitutions (58)
TL;DR: The genome of the pea aphid shows remarkable levels of gene duplication and equally remarkable gene absences that shed light on aspects of aphid biology, most especially its symbiosis with Buchnera.
Abstract: Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems.

1,271 citations

Journal ArticleDOI
TL;DR: In this paper, the authors study the interplay between short-scale commuting flows and long-range airline traffic in shaping the spatio-temporal pattern of a global epidemic.
Abstract: Among the realistic ingredients to be considered in the computational modeling of infectious diseases, human mobility represents a crucial challenge both on the theoretical side and in view of the limited availability of empirical data. To study the interplay between short-scale commuting flows and long-range airline traffic in shaping the spatiotemporal pattern of a global epidemic we (i) analyze mobility data from 29 countries around the world and find a gravity model able to provide a global description of commuting patterns up to 300 kms and (ii) integrate in a worldwide-structured metapopulation epidemic model a timescale-separation technique for evaluating the force of infection due to multiscale mobility processes in the disease dynamics. Commuting flows are found, on average, to be one order of magnitude larger than airline flows. However, their introduction into the worldwide model shows that the large-scale pattern of the simulated epidemic exhibits only small variations with respect to the baseline case where only airline traffic is considered. The presence of short-range mobility increases, however, the synchronization of subpopulations in close proximity and affects the epidemic behavior at the periphery of the airline transportation infrastructure. The present approach outlines the possibility for the definition of layered computational approaches where different modeling assumptions and granularities can be used consistently in a unifying multiscale framework.

1,268 citations


Authors

Showing all 64884 results

NameH-indexPapersCitations
Frank B. Hu2501675253464
Stuart H. Orkin186715112182
Bruce M. Spiegelman179434158009
David R. Williams1782034138789
D. M. Strom1763167194314
Markus Antonietti1761068127235
Lei Jiang1702244135205
Brenda W.J.H. Penninx1701139119082
Nahum Sonenberg167647104053
Carl W. Cotman165809105323
Yang Yang1642704144071
Jaakko Kaprio1631532126320
Ralph A. DeFronzo160759132993
Gavin Davies1592036149835
Tyler Jacks158463115172
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

95% related

University of Washington
305.5K papers, 17.7M citations

94% related

Columbia University
224K papers, 12.8M citations

94% related

Yale University
220.6K papers, 12.8M citations

94% related

University of Minnesota
257.9K papers, 11.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022694
20217,272
20207,310
20196,943
20186,496