scispace - formally typeset
Search or ask a question
Institution

Inner Mongolia University

EducationHohhot, China
About: Inner Mongolia University is a education organization based out in Hohhot, China. It is known for research contribution in the topics: Catalysis & Photocatalysis. The organization has 9839 authors who have published 7458 publications receiving 82823 citations.


Papers
More filters
Proceedings ArticleDOI
13 Dec 2014
TL;DR: This article introduces a custom multi-chip machine-learning architecture, showing that, on a subset of the largest known neural network layers, it is possible to achieve a speedup of 450.65x over a GPU, and reduce the energy by 150.31x on average for a 64-chip system.
Abstract: Many companies are deploying services, either for consumers or industry, which are largely based on machine-learning algorithms for sophisticated processing of large amounts of data. The state-of-the-art and most popular such machine-learning algorithms are Convolutional and Deep Neural Networks (CNNs and DNNs), which are known to be both computationally and memory intensive. A number of neural network accelerators have been recently proposed which can offer high computational capacity/area ratio, but which remain hampered by memory accesses. However, unlike the memory wall faced by processors on general-purpose workloads, the CNNs and DNNs memory footprint, while large, is not beyond the capability of the on chip storage of a multi-chip system. This property, combined with the CNN/DNN algorithmic characteristics, can lead to high internal bandwidth and low external communications, which can in turn enable high-degree parallelism at a reasonable area cost. In this article, we introduce a custom multi-chip machine-learning architecture along those lines. We show that, on a subset of the largest known neural network layers, it is possible to achieve a speedup of 450.65x over a GPU, and reduce the energy by 150.31x on average for a 64-chip system. We implement the node down to the place and route at 28nm, containing a combination of custom storage and computational units, with industry-grade interconnects.

1,486 citations

Journal ArticleDOI
TL;DR: Landscape sustainability is defined as the capacity of a landscape to consistently provide long-term, landscape-specific ecosystem services essential for maintaining and improving human well-being as discussed by the authors, which is a place-based, use-inspired science of understanding and improving the dynamic relationship between ecosystem services and human wellbeing in changing landscapes under uncertainties arising from internal feedbacks and external disturbances.
Abstract: The future of humanity depends on whether or not we have a vision to guide our transition toward sustainability, on scales ranging from local landscapes to the planet as a whole. Sustainability science is at the core of this vision, and landscapes and regions represent a pivotal scale domain. The main objectives of this paper are: (1) to elucidate key definitions and concepts of sustainability, including the Brundtland definition, the triple bottom line, weak and strong sustainability, resilience, human well-being, and ecosystem services; (2) to examine key definitions and concepts of landscape sustainability, including those derived from general concepts and those developed for specific landscapes; and (3) to propose a framework for developing a science of landscape sustainability. Landscape sustainability is defined as the capacity of a landscape to consistently provide long-term, landscape-specific ecosystem services essential for maintaining and improving human well-being. Fundamentally, well-being is a journey, not a destination. Landscape sustainability science is a place-based, use-inspired science of understanding and improving the dynamic relationship between ecosystem services and human well-being in changing landscapes under uncertainties arising from internal feedbacks and external disturbances. While landscape sustainability science emphasizes place-based research on landscape and regional scales, significant between landscape interactions and hierarchical linkages to both finer and broader scales (or externalities) must not be ignored. To advance landscape sustainability science, spatially explicit methods are essential, especially experimental approaches that take advantage of designed landscapes and multi-scaled simulation models that couple the dynamics of landscape services (ecosystem services provided by multiple landscape elements in combination as emergent properties) and human well-being.

989 citations

Journal ArticleDOI
12 Jul 2018-Nature
TL;DR: It is overwhelmingly that the interventions improved the sustainability of China’s rural land systems, but the impacts are nuanced and adverse outcomes have occurred.
Abstract: China has responded to a national land-system sustainability emergency via an integrated portfolio of large-scale programmes. Here we review 16 sustainability programmes, which invested US$378.5 billion (in 2015 US$), covered 623.9 million hectares of land and involved over 500 million people, mostly since 1998. We find overwhelmingly that the interventions improved the sustainability of China’s rural land systems, but the impacts are nuanced and adverse outcomes have occurred. We identify some key characteristics of programme success, potential risks to their durability, and future research needs. We suggest directions for China and other nations as they progress towards the Sustainable Development Goals of the United Nations’ Agenda 2030.

702 citations

Journal ArticleDOI
TL;DR: This article examined the diurnal and seasonal characteristics of the surface UHI in relation to land-cover properties in the Phoenix metropolitan region, located in the northern Sonoran desert, Arizona, USA.
Abstract: The urban heat island (UHI) phenomenon is a common environmental problem in urban landscapes which affects both climatic and ecological processes. Here we examined the diurnal and seasonal characteristics of the Surface UHI in relation to land-cover properties in the Phoenix metropolitan region, located in the northern Sonoran desert, Arizona, USA. Surface temperature patterns derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer for two day-night pairs of imagery from the summer (June) and the autumn (October) seasons were analyzed. Although the urban core was generally warmer than the rest of the area (especially at night), no consistent trends were found along the urbanization gradient. October daytime data showed that most of the urbanized area acted as a heat sink. Temperature patterns also revealed intra-urban temperature differences that were as large as, or even larger than, urban–rural differences. Regression analyses confirmed the important role of vegetation (daytime) and pavements (nighttime) in explaining spatio-temporal variation of surface temperatures. While these variables appear to be the main drivers of surface temperatures, their effects on surface temperatures are mediated considerably by humans as suggested by the high correlation between daytime temperatures and median family income. At night, however, the neighborhood socio-economic status was a much less controlling factor of surface temperatures. Finally, this study utilized geographically weighted regression which accounts for spatially varying relationships, and as such it is a more appropriate analytical framework for conducting research involving multiple spatial data layers with autocorrelated structures.

614 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an extensive description of binary transition metal oxides (BTMO) materials and the most commonly used synthetic methods for supercapacitors and review several notable BTMOs and their composites in application of supercapACitors.
Abstract: Binary transition metal oxides (BTMOs) possess higher reversible capacity, better structural stability and electronic conductivity, and have been widely studied to be novel electrode materials for supercapacitors. In this review, we present an extensive description of BTMO materials and the most commonly used synthetic methods. Furthermore, we review several notable BTMOs and their composites in application of supercapacitors. With the increasing attention for energy storage, more and more exciting results about BTMO materials will be reported in the future.

483 citations


Authors

Showing all 9903 results

NameH-indexPapersCitations
Yang Yang1712644153049
Wei Huang139241793522
Shuai Liu129109580823
Qi Li102156346762
Lei Wang95148644636
Yi-Bing Cheng8157628506
Zhenyu Li8163827711
Jianguo Wu7831931334
Yu Zhang7787126480
Hui Wang7591724802
Lei Wang73128326333
Xi Chen6787719021
Fuchou Tang6618518529
Hao Lin6422112514
Kun Li6460117227
Network Information
Related Institutions (5)
Jilin University
88.9K papers, 1.4M citations

88% related

Dalian University of Technology
71.9K papers, 1.1M citations

88% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

87% related

South China University of Technology
69.4K papers, 1.2M citations

87% related

Zhejiang University
183.2K papers, 3.4M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202340
202281
2021840
2020856
2019711
2018566