scispace - formally typeset
Search or ask a question
Institution

Institut Charles Sadron

FacilityStrasbourg, France
About: Institut Charles Sadron is a facility organization based out in Strasbourg, France. It is known for research contribution in the topics: Polymer & Polymerization. The organization has 1341 authors who have published 2252 publications receiving 96090 citations. The organization is also known as: ICS.


Papers
More filters
Journal ArticleDOI
29 Aug 1997-Science
TL;DR: In this article, a general approach for multilayers by consecutive adsorption of polyanions and polycations has been proposed and has been extended to other materials such as proteins or colloids.
Abstract: Multilayer films of organic compounds on solid surfaces have been studied for more than 60 years because they allow fabrication of multicomposite molecular assemblies of tailored architecture. However, both the Langmuir-Blodgett technique and chemisorption from solution can be used only with certain classes of molecules. An alternative approach—fabrication of multilayers by consecutive adsorption of polyanions and polycations—is far more general and has been extended to other materials such as proteins or colloids. Because polymers are typically flexible molecules, the resulting superlattice architectures are somewhat fuzzy structures, but the absence of crystallinity in these films is expected to be beneficial for many potential applications.

9,593 citations

Journal ArticleDOI
26 Jul 1996-Science
TL;DR: X-ray diffraction and electron microscopy showed that fullerene single-wall nanotubes (SWNTs) are nearly uniform in diameter and that they self-organize into “ropes,” which consist of 100 to 500 SWNTs in a two-dimensional triangular lattice with a lattice constant of 17 angstroms.
Abstract: The major part of this chapter has already appeared in [1], but because of the length restrictions (in Science), the discussion on why we think this form is given in only brief detail. This chapter goes into more depth to try to answer the questions of why the fullerenes form themselves. This is another example of the very special behavior of carbon. From a chemist’s standpoint, it is carbon’s ability to form multiple bonds that allows it to make these low dimensional forms rather than to produce tetrahedral forms. Carbon can readily accomplish this and it is in the mathematics and physics of the way this universe was put together, that carbon is given this property. One of the consequences of this property is that, if left to its own devices as carbon condenses from the vapor and if the temperature range is just right, above 1000°C, but lower than 1400°C, there is an efficient self-assembly process whose endpoint is C60.

5,215 citations

Journal ArticleDOI
01 Jun 1994-Nature
TL;DR: In this paper, a method was proposed to generate polymer films with an essentially monodisperse pore size, in which the pores are organized spontaneously into periodic hexagonal arrays.
Abstract: AN important challenge in the preparation of porous polymer membranes for technological applications is to control both the size distribution and the relative positions of the pores. We have found a way to generate polymer films with an essentially monodisperse pore size, in which the pores are organized spontaneously into periodic hexagonal arrays. The films, which are 10–30 um thick, are produced by evaporating solutions of star-shaped polystyrene or polystyrene-polyparaphenylene block copolymers in carbon di-sulphide under a flow of moist gas. Empty spherical cells, about 0.2–10 µm in diameter, appear spontaneously in a hexagonal array, and the cells are open at the film surface. The use of star polymers, or of polymeric micelles, seems to be essential for obtaining this morphology. These membranes might find application in controlled release of drugs or other bioactive species, or as materials with useful optical properties, moulds or scaffolding for forming ordered microstructures, and model substrates for surface science.

1,213 citations

Journal ArticleDOI
09 Aug 2013-Science
TL;DR: This work reviews the progress that has been made in making sequence-controlled polymers of increasing length and complexity and proposes some strategies for controlling sequences in chain-growth and step-growth polymerizations.
Abstract: Background During the last few decades, progress has been made in manipulating the architecture of synthetic polymer materials. However, the primary structure—that is, the sequential arrangement of monomer units in a polymer chain—is generally poorly controlled in synthetic macromolecules. Common synthetic polymers are usually homopolymers, made of the same monomer unit, or copolymers with simple chain microstructures, such as random or block copolymers. These polymers are used in many areas but do not have the structural and functional complexity of sequence-defined biopolymers, such as nucleic acids or proteins. Indeed, monomer sequence regulation plays a key role in biology and is a prerequisite for crucial features of life, such as heredity, self-replication, complex self-assembly, and molecular recognition. In this context, developing synthetic polymers containing controlled monomer sequences is an important area for research. Precise molecular encoding of synthetic polymer chains. In most synthetic copolymers, monomer units (represented here as colored square boxes A, B, C, and D) are distributed randomly along the polymer chains (left). In sequence-controlled polymers, they are arranged in a specific order in all of the chains (right). Monomer sequence regularity strongly influences the molecular, supramolecular, andmacroscopic properties of polymer materials. Advances Various synthetic methods for controlling monomer sequences in polymers have been identified, and two major trends in the field of sequence-controlled polymers have emerged. Some approaches use biological concepts that have been optimized by nature for sequence regulation. For instance, DNA templates, enzymes, or even living organisms can be used to prepare sequence-defined polymers. These natural mechanisms can be adapted to tolerate nonnatural monomers. The other trend is the preparation of sequence-controlled polymers by synthetic chemistry. In the most popular approach, monomer units are attached one by one to a support, which is an efficient method but demanding in practice. Recently, some strategies have been proposed for controlling sequences in chain-growth and step-growth polymerizations. These mechanisms usually allow fast and large-scale synthesis of polymers. Specific kinetics and particular catalytic or template conditions allow sequence regulation in these processes. Outlook The possibility of controlling monomer sequences in synthetic macromolecules has many scientific and technological implications. Information can be controlled at the molecular level in synthetic polymer chains. This opens up interesting perspectives for the field of data storage. In addition, having power over monomer sequences could mean structural control of the resulting polymer, as it strongly influences macromolecular folding and self-assembly. For instance, functional synthetic assemblies that mimic the properties of globular proteins, such as enzymes and transporters, can be foreseen. Moreover, monomer sequence control influences some macroscopic properties. For example, bulk properties such as conductivity, rigidity, elasticity, or biodegradability can be finely tuned in sequence-controlled polymers. The behavior of polymers in solution, particularly in water, is also strongly dependent on monomer sequences. Thus, sequence regulation may enable a more effective control of structure-property relations in tomorrow’s polymer materials.

1,008 citations

Journal ArticleDOI
TL;DR: The state of dimeric and oligomeric surfactants in aqueous solutions at concentration below the critical micellization concentration (cmc) is reviewed and their behavior at the air/solution and solid-solution interfaces is reviewed.

987 citations


Authors

Showing all 1349 results

NameH-indexPapersCitations
Johan Auwerx15865395779
Emmanuelle Perez138155099016
Jean-Marie Lehn123105484616
Katharina Landfester9484738168
Pierre Schaaf7433119775
Jean-Claude Voegel7331319121
Jean-François Joanny7229420700
Gero Decher6717631416
Jean-François Lutz6722618730
Sergiy Minko6625618723
Eric W. Kaler6523816688
Paul Higgs6331612975
Bernard Lotz6320113196
Simon Biggs6337913124
Lars Wågberg6235714149
Network Information
Related Institutions (5)
Beijing University of Chemical Technology
25.5K papers, 587.4K citations

86% related

Tokyo Institute of Technology
101.6K papers, 2.3M citations

84% related

East China University of Science and Technology
36.4K papers, 763.1K citations

83% related

University of Akron
29.1K papers, 702.3K citations

83% related

DuPont
37.1K papers, 945.6K citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
20227
202111
202013
201931
201824