scispace - formally typeset
Search or ask a question

Showing papers by "Institut national de la recherche agronomique published in 2011"


Journal ArticleDOI
12 May 2011-Nature
TL;DR: Three robust clusters (referred to as enterotypes hereafter) are identified that are not nation or continent specific and confirmed in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous.
Abstract: Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.

5,566 citations


Journal ArticleDOI
Jens Kattge1, Sandra Díaz2, Sandra Lavorel3, Iain Colin Prentice4, Paul Leadley5, Gerhard Bönisch1, Eric Garnier3, Mark Westoby4, Peter B. Reich6, Peter B. Reich7, Ian J. Wright4, Johannes H. C. Cornelissen8, Cyrille Violle3, Sandy P. Harrison4, P.M. van Bodegom8, Markus Reichstein1, Brian J. Enquist9, Nadejda A. Soudzilovskaia8, David D. Ackerly10, Madhur Anand11, Owen K. Atkin12, Michael Bahn13, Timothy R. Baker14, Dennis D. Baldocchi10, Renée M. Bekker15, Carolina C. Blanco16, Benjamin Blonder9, William J. Bond17, Ross A. Bradstock18, Daniel E. Bunker19, Fernando Casanoves20, Jeannine Cavender-Bares7, Jeffrey Q. Chambers21, F. S. Chapin22, Jérôme Chave3, David A. Coomes23, William K. Cornwell8, Joseph M. Craine24, B. H. Dobrin9, Leandro da Silva Duarte16, Walter Durka25, James J. Elser26, Gerd Esser27, Marc Estiarte28, William F. Fagan29, Jingyun Fang, Fernando Fernández-Méndez30, Alessandra Fidelis31, Bryan Finegan20, Olivier Flores32, H. Ford33, Dorothea Frank1, Grégoire T. Freschet34, Nikolaos M. Fyllas14, Rachael V. Gallagher4, Walton A. Green35, Alvaro G. Gutiérrez25, Thomas Hickler, Steven I. Higgins36, John G. Hodgson37, Adel Jalili, Steven Jansen38, Carlos Alfredo Joly39, Andrew J. Kerkhoff40, Don Kirkup41, Kaoru Kitajima42, Michael Kleyer43, Stefan Klotz25, Johannes M. H. Knops44, Koen Kramer, Ingolf Kühn16, Hiroko Kurokawa45, Daniel C. Laughlin46, Tali D. Lee47, Michelle R. Leishman4, Frederic Lens48, Tanja Lenz4, Simon L. Lewis14, Jon Lloyd49, Jon Lloyd14, Joan Llusià28, Frédérique Louault50, Siyan Ma10, Miguel D. Mahecha1, Peter Manning51, Tara Joy Massad1, Belinda E. Medlyn4, Julie Messier9, Angela T. Moles52, Sandra Cristina Müller16, Karin Nadrowski53, Shahid Naeem54, Ülo Niinemets55, S. Nöllert1, A. Nüske1, Romà Ogaya28, Jacek Oleksyn56, Vladimir G. Onipchenko57, Yusuke Onoda58, Jenny C. Ordoñez59, Gerhard E. Overbeck16, Wim A. Ozinga59, Sandra Patiño14, Susana Paula60, Juli G. Pausas60, Josep Peñuelas28, Oliver L. Phillips14, Valério D. Pillar16, Hendrik Poorter, Lourens Poorter59, Peter Poschlod61, Andreas Prinzing62, Raphaël Proulx63, Anja Rammig64, Sabine Reinsch65, Björn Reu1, Lawren Sack66, Beatriz Salgado-Negret20, Jordi Sardans28, Satomi Shiodera67, Bill Shipley68, Andrew Siefert69, Enio E. Sosinski70, Jean-François Soussana50, Emily Swaine71, Nathan G. Swenson72, Ken Thompson37, Peter E. Thornton73, Matthew S. Waldram74, Evan Weiher47, Michael T. White75, S. White11, S. J. Wright76, Benjamin Yguel3, Sönke Zaehle1, Amy E. Zanne77, Christian Wirth58 
Max Planck Society1, National University of Cordoba2, Centre national de la recherche scientifique3, Macquarie University4, University of Paris-Sud5, University of Western Sydney6, University of Minnesota7, VU University Amsterdam8, University of Arizona9, University of California, Berkeley10, University of Guelph11, Australian National University12, University of Innsbruck13, University of Leeds14, University of Groningen15, Universidade Federal do Rio Grande do Sul16, University of Cape Town17, University of Wollongong18, New Jersey Institute of Technology19, Centro Agronómico Tropical de Investigación y Enseñanza20, Lawrence Berkeley National Laboratory21, University of Alaska Fairbanks22, University of Cambridge23, Kansas State University24, Helmholtz Centre for Environmental Research - UFZ25, Arizona State University26, University of Giessen27, Autonomous University of Barcelona28, University of Maryland, College Park29, Universidad del Tolima30, University of São Paulo31, University of La Réunion32, University of York33, University of Sydney34, Harvard University35, Goethe University Frankfurt36, University of Sheffield37, University of Ulm38, State University of Campinas39, Kenyon College40, Royal Botanic Gardens41, University of Florida42, University of Oldenburg43, University of Nebraska–Lincoln44, Tohoku University45, Northern Arizona University46, University of Wisconsin–Eau Claire47, Naturalis48, James Cook University49, Institut national de la recherche agronomique50, Newcastle University51, University of New South Wales52, Leipzig University53, Columbia University54, Estonian University of Life Sciences55, Polish Academy of Sciences56, Moscow State University57, Kyushu University58, Wageningen University and Research Centre59, Spanish National Research Council60, University of Regensburg61, University of Rennes62, Université du Québec à Trois-Rivières63, Potsdam Institute for Climate Impact Research64, Technical University of Denmark65, University of California, Los Angeles66, Hokkaido University67, Université de Sherbrooke68, Syracuse University69, Empresa Brasileira de Pesquisa Agropecuária70, University of Aberdeen71, Michigan State University72, Oak Ridge National Laboratory73, University of Leicester74, Utah State University75, Smithsonian Institution76, University of Missouri77
01 Sep 2011
TL;DR: TRY as discussed by the authors is a global database of plant traits, including morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs, which can be used for a wide range of research from evolutionary biology, community and functional ecology to biogeography.
Abstract: Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world's 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.

2,017 citations


Journal ArticleDOI
TL;DR: In this article, a framework for considering compositional heterogeneity (the number and proportions of different cover types) and configurational heterogeneity, the spatial arrangement of cover types, is proposed.
Abstract: Biodiversity in agricultural landscapes can be increased with conversion of some production lands into 'more-natural'- unmanaged or extensively managed - lands. However, it remains unknown to what extent biodiversity can be enhanced by altering landscape pattern without reducing agricultural production. We propose a framework for this problem, considering separately compositional heterogeneity (the number and proportions of different cover types) and configurational heterogeneity (the spatial arrangement of cover types). Cover type classification and mapping is based on species requirements, such as feeding and nesting, resulting in measures of 'functional landscape heterogeneity'. We then identify three important questions: does biodiversity increase with (1) increasing heterogeneity of the more-natural areas, (2) increasing compositional heterogeneity of production cover types and (3) increasing configurational heterogeneity of production cover types? We discuss approaches for addressing these questions. Such studies should have high priority because biodiversity protection globally depends increasingly on maintaining biodiversity in human-dominated landscapes.

1,232 citations


Journal ArticleDOI
Nevin D. Young1, Frédéric Debellé2, Frédéric Debellé3, Giles E. D. Oldroyd4, René Geurts5, Steven B. Cannon6, Steven B. Cannon7, Michael K. Udvardi, Vagner A. Benedito8, Klaus F. X. Mayer, Jérôme Gouzy3, Jérôme Gouzy2, Heiko Schoof9, Yves Van de Peer10, Sebastian Proost10, Douglas R. Cook11, Blake C. Meyers12, Manuel Spannagl, Foo Cheung13, Stéphane De Mita5, Vivek Krishnakumar13, Heidrun Gundlach, Shiguo Zhou14, Joann Mudge15, Arvind K. Bharti15, Jeremy D. Murray4, Marina Naoumkina, Benjamin D. Rosen11, Kevin A. T. Silverstein1, Haibao Tang13, Stephane Rombauts10, Patrick X. Zhao, Peng Zhou1, Valérie Barbe, Philippe Bardou3, Philippe Bardou2, Michael Bechner14, Arnaud Bellec2, Anne Berger, Hélène Bergès2, Shelby L. Bidwell13, Ton Bisseling16, Ton Bisseling5, Nathalie Choisne, Arnaud Couloux, Roxanne Denny1, Shweta Deshpande17, Xinbin Dai, Jeff J. Doyle18, Anne Marie Dudez2, Anne Marie Dudez3, Andrew Farmer15, Stéphanie Fouteau, Carolien Franken5, Chrystel Gibelin2, Chrystel Gibelin3, John Gish11, Steven A. Goldstein14, Alvaro J. González12, Pamela J. Green12, Asis Hallab19, Marijke Hartog5, Axin Hua17, Sean Humphray20, Dong-Hoon Jeong12, Yi Jing17, Anika Jöcker19, Steve Kenton17, Dong-Jin Kim11, Dong-Jin Kim21, Kathrin Klee19, Hongshing Lai17, Chunting Lang5, Shaoping Lin17, Simone L. Macmil17, Ghislaine Magdelenat, Lucy Matthews20, Jamison McCorrison13, Erin L. Monaghan13, Jeong Hwan Mun22, Jeong Hwan Mun11, Fares Z. Najar17, Christine Nicholson20, Céline Noirot2, Majesta O'Bleness17, Charles Paule1, Julie Poulain, Florent Prion3, Florent Prion2, Baifang Qin17, Chunmei Qu17, Ernest F. Retzel15, Claire Riddle20, Erika Sallet2, Erika Sallet3, Sylvie Samain, Nicolas Samson2, Nicolas Samson3, Iryna Sanders17, Olivier Saurat2, Olivier Saurat3, Claude Scarpelli, Thomas Schiex2, Béatrice Segurens, Andrew J. Severin6, D. Janine Sherrier12, Ruihua Shi17, Sarah Sims20, Susan R. Singer23, Senjuti Sinharoy, Lieven Sterck10, Agnès Viollet, Bing Bing Wang1, Keqin Wang17, Mingyi Wang, Xiaohong Wang1, Jens Warfsmann19, Jean Weissenbach, Doug White17, James D. White17, Graham B. Wiley17, Patrick Wincker, Yanbo Xing17, Limei Yang17, Ziyun Yao17, Fu Ying17, Jixian Zhai12, Liping Zhou17, Antoine Zuber2, Antoine Zuber3, Jean Dénarié3, Jean Dénarié2, Richard A. Dixon, Gregory D. May15, David C. Schwartz14, Jane Rogers24, Francis Quetier, Christopher D. Town13, Bruce A. Roe17 
22 Dec 2011-Nature
TL;DR: The draft sequence of the M. truncatula genome sequence is described, a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics, which provides significant opportunities to expand al falfa’s genomic toolbox.
Abstract: Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing ∼94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.

1,153 citations


Journal ArticleDOI
TL;DR: New phylogenetic analysis of 154 protein-coding genes suggests that assignment of Populus to Malvidae, rather than Fabidae, is warranted, and macrosyntenic relationships between Fragaria and Prunus predict a hypothetical ancestral Rosaceae genome that had nine chromosomes.
Abstract: The woodland strawberry, Fragaria vesca (2n = 2x = 14), is a versatile experimental plant system. This diminutive herbaceous perennial has a small genome (240 Mb), is amenable to genetic transformation and shares substantial sequence identity with the cultivated strawberry (Fragaria × ananassa) and other economically important rosaceous plants. Here we report the draft F. vesca genome, which was sequenced to ×39 coverage using second-generation technology, assembled de novo and then anchored to the genetic linkage map into seven pseudochromosomes. This diploid strawberry sequence lacks the large genome duplications seen in other rosids. Gene prediction modeling identified 34,809 genes, with most being supported by transcriptome mapping. Genes critical to valuable horticultural traits including flavor, nutritional value and flowering time were identified. Macrosyntenic relationships between Fragaria and Prunus predict a hypothetical ancestral Rosaceae genome that had nine chromosomes. New phylogenetic analysis of 154 protein-coding genes suggests that assignment of Populus to Malvidae, rather than Fabidae, is warranted.

1,085 citations


Journal ArticleDOI
TL;DR: A set of qualitative and quantitative questionnaires on perceived risks and foreseen impacts of climate and climate change on agriculture in Europe was distributed to agro-climatic and agronomy experts in 26 countries as mentioned in this paper.

958 citations


Journal ArticleDOI
TL;DR: In this paper, the authors upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE), to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use.
Abstract: We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5 degrees x 0.5 degrees spatial resolution and a monthly temporal resolution from 1982 to 2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting of disturbance and lagged environmental effects, along with improved characterization of errors in the training data set, would contribute most to further reducing uncertainties. Our global estimates of LE (158 +/- 7 J x 10(18) yr(-1)), H (164 +/- 15 J x 10(18) yr(-1)), and GPP (119 +/- 6 Pg C yr(-1)) were similar to independent estimates. Our global TER estimate (96 +/- 6 Pg C yr(-1)) was likely underestimated by 5-10%. Hot spot regions of interannual variability in carbon fluxes occurred in semiarid to semihumid regions and were controlled by moisture supply. Overall, GPP was more important to interannual variability in NEE than TER. Our empirically derived fluxes may be used for calibration and evaluation of land surface process models and for exploratory and diagnostic assessments of the biosphere.

927 citations


Journal ArticleDOI
TL;DR: The elucidation of the mechanisms by which the immune system influences behavior yields a host of targets for potential therapeutic development as well as informing strategies for the prevention of neuropsychiatric disease in at risk populations.

910 citations


Journal ArticleDOI
TL;DR: Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea, and shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating.
Abstract: Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to ,1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.

855 citations


Journal ArticleDOI
TL;DR: To make the most of the latest technical developments, the need for a well‐established strategy including standardized high‐throughput bench protocols and specific bioinformatic tools, from primer design to allele calling is outlined.
Abstract: Microsatellites have been popular molecular markers ever since their advent in the late eighties. Despite growing competition from new genotyping and sequencing techniques, the use of these versatile and cost-effective markers continues to increase, boosted by successive technical advances. First, methods for multiplexing PCR have considerably improved over the last years, thereby decreasing genotyping costs and increasing throughput. Second, next-generation sequencing technologies allow the identification of large numbers of microsatellite loci at reduced cost in non-model species. As a consequence, more stringent selection of loci is possible, thereby further enhancing multiplex quality and efficiency. However, current practices are lagging behind. By surveying recently published population genetic studies relying on simple sequence repeats, we show that more than half of the studies lack appropriate quality controls and do not make use of multiplex PCR. To make the most of the latest technical developments, we outline the need for a well-established strategy including standardized high-throughput bench protocols and specific bioinformatic tools, from primer design to allele calling.

775 citations


Journal ArticleDOI
TL;DR: The authors provides an overview of the key theoretical and empirical insights into the Porter Hypothesis, draws policy implications from these insights, and sketches out major research themes going forward, as well as highlights the major research topics going forward.
Abstract: Twenty years ago, Harvard Business School economist and strategy professor Michael Porter stood conventional wisdom about the impact of environmental regulation on business on its head by declaring that well-designed regulation could actually enhance competitiveness. The traditional view of environmental regulation held by virtually all economists until that time was that requiring firms to reduce an externality like pollution necessarily restricted their options and thus by definition reduced their profits. After all, if profitable opportunities existed to reduce pollution, profit-maximizing firms would already be taking advantage of those opportunities. Over the past 20 years, much has been written about what has since become known simply as the Porter Hypothesis (PH). Yet even today, we find conflicting evidence and alternative theories that might explain the PH, and oftentimes a misunderstanding of what the PH does and does not say. This paper provides an overview of the key theoretical and empirical insights into the PH to date, draws policy implications from these insights, and sketches out major research themes going forward.

Journal ArticleDOI
29 Jul 2011-Science
TL;DR: An analysis of protein-protein interactions in Arabidopsis identifies the plant interactome and demonstrated plant immune system functions for 15 of 17 tested host proteins that interact with effectors from both pathogens.
Abstract: Plants generate effective responses to infection by recognizing both conserved and variable pathogen-encoded molecules. Pathogens deploy virulence effector proteins into host cells, where they interact physically with host proteins to modulate defense. We generated an interaction network of plant-pathogen effectors from two pathogens spanning the eukaryote-eubacteria divergence, three classes of Arabidopsis immune system proteins, and ~8000 other Arabidopsis proteins. We noted convergence of effectors onto highly interconnected host proteins and indirect, rather than direct, connections between effectors and plant immune receptors. We demonstrated plant immune system functions for 15 of 17 tested host proteins that interact with effectors from both pathogens. Thus, pathogens from different kingdoms deploy independently evolved virulence proteins that interact with a limited set of highly connected cellular hubs to facilitate their diverse life-cycle strategies.

Journal ArticleDOI
27 Jan 2011-PLOS ONE
TL;DR: This is the first large series to demonstrate a composition change in the microbiota of colon cancer patients with possible impact on mucosal immune response and 80% of all sequences could be assigned to a total of 819 taxa based on default parameter of Classifier software.
Abstract: The composition of the human intestinal microbiota is linked to health status. The aim was to analyze the microbiota of normal and colon cancer patients in order to establish cancer-related dysbiosis. Patients and Methods: Stool bacterial DNA was extracted prior to colonoscopy from 179 patients: 60 with colorectal cancer, and 119 with normal colonoscopy. Bacterial genes obtained by pyrosequencing of 12 stool samples (6 Normal and 6 Cancer) were subjected to a validated Principal Component Analysis (PCA) test. The dominant and subdominant bacterial population (C. leptum, C. coccoides, Bacteroides/Prevotella, Lactobacillus/Leuconostoc/Pediococcus groups, Bifidobacterium genus, and E. coli, and Faecalibacterium prausnitzii species) were quantified in all individuals using qPCR and specific IL17 producer cells in the intestinal mucosa were characterized using immunohistochemistry. Findings: Pyrosequencing (Minimal sequence 200 nucleotide reads) revealed 80% of all sequences could be assigned to a total of 819 taxa based on default parameter of Classifier software. The phylogenetic core in Cancer individuals was different from that in Normal individuals according to the PCA analysis, with trends towards differences in the dominant and subdominant families of bacteria. Consequently, All-bacteria [log(10) (bacteria/g of stool)] in Normal, and Cancer individuals were similar [11.88 +/- 0.35, and 11.80 +/- 0.56, respectively, (P = 0.16)], according to qPCR values whereas among all dominant and subdominant species only those of Bacteroides/Prevotella were higher (All bacteria-specific bacterium; P = 0.009) in Cancer (-1.04 +/- 0.55) than in Normal (-1.40 +/- 0.83) individuals. IL17 immunoreactive cells were significantly expressed more in the normal mucosa of cancer patients than in those with normal colonoscopy. Conclusion: This is the first large series to demonstrate a composition change in the microbiota of colon cancer patients with possible impact on mucosal immune response. These data open new filed for mass screening and pathophysiology investigations.

Journal ArticleDOI
TL;DR: It is demonstrated that the early onset of HFD‐induced hyperglycemia is characterized by an increased bacterial translocation from intestine towards tissues, fuelling a continuous metabolic bacteremia, which could represent new therapeutic targets.
Abstract: A fat-enriched diet modifies intestinal microbiota and initiates a low-grade inflammation, insulin resistance and type-2 diabetes. Here, we demonstrate that before the onset of diabetes, after only one week of a high-fat diet (HFD), live commensal intestinal bacteria are present in large numbers in the adipose tissue and the blood where they can induce inflammation. This translocation is prevented in mice lacking the microbial pattern recognition receptors Nod1 or CD14, but overtly increased in Myd88 knockout and ob/ob mouse. This 'metabolic bacteremia' is characterized by an increased co-localization with dendritic cells from the intestinal lamina propria and by an augmented intestinal mucosal adherence of non-pathogenic Escherichia coli. The bacterial translocation process from intestine towards tissue can be reversed by six weeks of treatment with the probiotic strain Bifidobacterium animalis subsp. lactis 420, which improves the animals' overall inflammatory and metabolic status. Altogether, these data demonstrate that the early onset of HFD-induced hyperglycemia is characterized by an increased bacterial translocation from intestine towards tissues, fuelling a continuous metabolic bacteremia, which could represent new therapeutic targets.

Journal ArticleDOI
TL;DR: A simple extension of a sparse PLS exploratory approach is proposed to perform variable selection in a multiclass classification framework and has a classification performance similar to other wrapper or sparse discriminant analysis approaches on public microarray and SNP data sets.
Abstract: Variable selection on high throughput biological data, such as gene expression or single nucleotide polymorphisms (SNPs), becomes inevitable to select relevant information and, therefore, to better characterize diseases or assess genetic structure. There are different ways to perform variable selection in large data sets. Statistical tests are commonly used to identify differentially expressed features for explanatory purposes, whereas Machine Learning wrapper approaches can be used for predictive purposes. In the case of multiple highly correlated variables, another option is to use multivariate exploratory approaches to give more insight into cell biology, biological pathways or complex traits. A simple extension of a sparse PLS exploratory approach is proposed to perform variable selection in a multiclass classification framework. sPLS-DA has a classification performance similar to other wrapper or sparse discriminant analysis approaches on public microarray and SNP data sets. More importantly, sPLS-DA is clearly competitive in terms of computational efficiency and superior in terms of interpretability of the results via valuable graphical outputs. sPLS-DA is available in the R package mixOmics, which is dedicated to the analysis of large biological data sets.

Journal ArticleDOI
TL;DR: The main findings are that socio-economic drivers have favoured land cover changes contributing to increasing fire hazard in the last decades, and large wildfires are becoming more frequent and increased fire frequency is promoting homogeneous landscapes covered by fire-prone shrublands.

Journal ArticleDOI
TL;DR: This work sequenced and assembled the draft genome of Theobroma cacao, an economically important tropical-fruit tree crop that is the source of chocolate, and proposed an evolutionary scenario whereby the ten T. cacao chromosomes were shaped from an ancestor through eleven chromosome fusions.
Abstract: We sequenced and assembled the draft genome of Theobroma cacao, an economically important tropical-fruit tree crop that is the source of chocolate. This assembly corresponds to 76% of the estimated genome size and contains almost all previously described genes, with 82% of these genes anchored on the 10 T. cacao chromosomes. Analysis of this sequence information highlighted specific expansion of some gene families during evolution, for example, flavonoid-related genes. It also provides a major source of candidate genes for T. cacao improvement. Based on the inferred paleohistory of the T. cacao genome, we propose an evolutionary scenario whereby the ten T. cacao chromosomes were shaped from an ancestor through eleven chromosome fusions.

Journal ArticleDOI
TL;DR: The proportion of non-native species that are viewed as benign or even desirable will slowly increase over time as their potential contributions to society and to achieving conservation objectives become well recognized and realized.
Abstract: Non-native species can cause the loss of biological diversity (i.e., genetic, species, and ecosystem diversity) and threaten the well-being of humans when they become invasive. In some cases, however, they can also provide conservation benefits. We examined the ways in which non-native species currently contribute to conservation objectives. These include, for example, providing habitat or food resources to rare species, serving as functional substitutes for extinct taxa, and providing desirable ecosystem functions. We speculate that non-native species might contribute to achieving conservation goals in the future because they may be more likely than native species to persist and provide ecosystem services in areas where climate and land use are changing rapidly and because they may evolve into new and endemic taxa. The management of non-native species and their potential integration into conservation plans depends on how conservation goals are set in the future. A fraction of non-native species will continue to cause biological and economic damage, and substantial uncertainty surrounds the potential future effects of all non-native species. Nevertheless, we predict the proportion of non-native species that are viewed as benign or even desirable will slowly increase over time as their potential contributions to society and to achieving conservation objectives become well recognized and realized.

Journal ArticleDOI
23 May 2011-Langmuir
TL;DR: The high stability of the more covered droplets was attributed to the particle irreversible adsorption associated with the formation of a 2D network, and the sustainability and low environmental impact of cellulose open opportunities for the development of environmentally friendly new materials.
Abstract: We studied oil in water Pickering emulsions stabilized by cellulose nanocrystals obtained by hydrochloric acid hydrolysis of bacterial cellulose. The resulting solid particles, called bacterial cellulose nanocrystals (BCNs), present an elongated shape and low surface charge density, forming a colloidal suspension in water. The BCNs produced proved to stabilize the hexadecane/water interface, promoting monodispersed oil in water droplets around 4 μm in diameter stable for several months. We characterized the emulsion and visualized the particles at the surface of the droplets by scanning electron microscopy (SEM) and calculated the droplet coverage by varying the BCN concentration in the aqueous phase. A 60% coverage limit has been defined, above which very stable, deformable droplets are obtained. The high stability of the more covered droplets was attributed to the particle irreversible adsorption associated with the formation of a 2D network. Due to the sustainability and low environmental impact of cellulose, the BCN based emulsions open opportunities for the development of environmentally friendly new materials.

Journal ArticleDOI
24 Nov 2011-Nature
TL;DR: There was a larger temperature lag (by 3.1 times) between the climate and plant community composition in lowland forests than in highland forests, and the explanation lies in the following properties of lowland, as compared to highland, forests: the higher proportion of species with greater ability for local persistence as the climate warms, the reduced opportunity for short-distance escapes, the greater habitat fragmentation.
Abstract: Climate change is driving latitudinal and altitudinal shifts in species distribution worldwide, leading to novel species assemblages. Lags between these biotic responses and contemporary climate changes have been reported for plants and animals. Theoretically, the magnitude of these lags should be greatest in lowland areas, where the velocity of climate change is expected to be much greater than that in highland areas. We compared temperature trends to temperatures reconstructed from plant assemblages (observed in 76,634 surveys) over a 44-year period in France (1965-2008). Here we report that forest plant communities had responded to 0.54 °C of the effective increase of 1.07 °C in highland areas (500-2,600 m above sea level), while they had responded to only 0.02 °C of the 1.11 °C warming trend in lowland areas. There was a larger temperature lag (by 3.1 times) between the climate and plant community composition in lowland forests than in highland forests. The explanation of such disparity lies in the following properties of lowland, as compared to highland, forests: the higher proportion of species with greater ability for local persistence as the climate warms, the reduced opportunity for short-distance escapes, and the greater habitat fragmentation. Although mountains are currently considered to be among the ecosystems most threatened by climate change (owing to mountaintop extinction), the current inertia of plant communities in lowland forests should also be noted, as it could lead to lowland biotic attrition.

Journal ArticleDOI
TL;DR: Results are interpreted as the signature of a transition from source to sink growth limitation under water deficit, suggesting release of the influence of C availability on sink organ growth.
Abstract: In plants, carbon (C) molecules provide building blocks for biomass production, fuel for energy, and exert signalling roles to shape development and metabolism. Accordingly, plant growth is well correlated with light interception and energy conversion through photosynthesis. Because water deficits close stomata and thus reduce C entry, it has been hypothesised that droughted plants are under C starvation and their growth under C limitation. In this review, these points are questioned by combining literature review with experimental and modelling illustrations in various plant organs and species. First, converging evidence is gathered from the literature that water deficit generally increases C concentration in plant organs. The hypothesis is raised that this could be due to organ expansion (as a major C sink) being affected earlier and more intensively than photosynthesis (C source) and metabolism. How such an increase is likely to interact with C signalling is not known. Hence, the literature is reviewed for possible links between C and stress signalling that could take part in this interaction. Finally, the possible impact of water deficit-induced C accumulation on growth is questioned for various sink organs of several species by combining published as well as new experimental data or data generated using a modelling approach. To this aim, robust correlations between C availability and sink organ growth are reported in the absence of water deficit. Under water deficit, relationships weaken or are modified suggesting release of the influence of C availability on sink organ growth. These results are interpreted as the signature of a transition from source to sink growth limitation under water deficit.

Journal ArticleDOI
TL;DR: The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition.
Abstract: Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101-Mb genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89-Mb genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,399 predicted proteins of M. larici-populina with the 17,773 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic lifestyle include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins, impaired nitrogen and sulfur assimilation pathways, and expanded families of amino acid and oligopeptide membrane transporters. The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells.

Journal ArticleDOI
TL;DR: The results support the existence of a bank mechanism that regulates nutrient and carbon sequestration in soil: PE is low when nutrients availability is high, allowing sequestration of nutrients and carbon; in contrast, microbes release nutrients from SOM when nutrient availability is low.
Abstract: It is increasingly recognized that soil microbes have the ability to decompose old recalcitrant soil organic matter (SOM) by using fresh carbon as a source of energy, a phenomena called priming effect (PE). However, efforts to determine the consequences of this PE for soil carbon and nitrogen dynamics are in their early stage. Moreover, little is known about the microbial populations involved. Here we explore the consequences of PE for SOM dynamics and mineral nitrogen availability in a soil incubation experiment (161 days), combining the supply of dual-labeled (13C and 14C) cellulose and mineral nutrients. The microbial groups involved in PE were investigated using molecular fingerprinting techniques (FAMEs and B- and F-ARISA). We show that mean residence time of SOM pool controlled by the PE decreased from 3130 years in the subsoil, where the availability of fresh carbon is very low, to 17–39 years in the surface layer. This result suggests that the decomposition of this recalcitrant soil C pool is strictly dependent on the presence of fresh C and is not an energetically viable mean of accessing C for soil microbes. We also suggest that fungi are the predominant actors of cellulose decomposition and induced PE and they adjust their degradation activity to nutrient availability. The predominant role of fungi can be explained by their ability to grow as mycelium which allows them to explore soil space and mine large reserve of SOM. Finally, our results support the existence of a bank mechanism that regulates nutrient and carbon sequestration in soil: PE is low when nutrient availability is high, allowing sequestration of nutrients and carbon; in contrast, microbes release nutrients from SOM when nutrient availability is low. This bank mechanism may help to synchronize the availability of soluble nutrients to plant requirement and contribute to long-term SOM accumulation in ecosystems.

Journal ArticleDOI
08 Dec 2011-PLOS ONE
TL;DR: A large maize SNP array taken from more than 800,000 SNPs was established and its use for diversity analysis and high density linkage mapping and independent validation of the B73 sequence assembly was reported.
Abstract: SNP genotyping arrays have been useful for many applications that require a large number of molecular markers such as high-density genetic mapping, genome-wide association studies (GWAS), and genomic selection. We report the establishment of a large maize SNP array and its use for diversity analysis and high density linkage mapping. The markers, taken from more than 800,000 SNPs, were selected to be preferentially located in genes and evenly distributed across the genome. The array was tested with a set of maize germplasm including North American and European inbred lines, parent/F1 combinations, and distantly related teosinte material. A total of 49,585 markers, including 33,417 within 17,520 different genes and 16,168 outside genes, were of good quality for genotyping, with an average failure rate of 4% and rates up to 8% in specific germplasm. To demonstrate this array's use in genetic mapping and for the independent validation of the B73 sequence assembly, two intermated maize recombinant inbred line populations – IBM (B73×Mo17) and LHRF (F2×F252) – were genotyped to establish two high density linkage maps with 20,913 and 14,524 markers respectively. 172 mapped markers were absent in the current B73 assembly and their placement can be used for future improvements of the B73 reference sequence. Colinearity of the genetic and physical maps was mostly conserved with some exceptions that suggest errors in the B73 assembly. Five major regions containing non-colinearities were identified on chromosomes 2, 3, 6, 7 and 9, and are supported by both independent genetic maps. Four additional non-colinear regions were found on the LHRF map only; they may be due to a lower density of IBM markers in those regions or to true structural rearrangements between lines. Given the array's high quality, it will be a valuable resource for maize genetics and many aspects of maize breeding.

Journal ArticleDOI
TL;DR: It is shown that a family of microRNAs, miR-196, is overexpressed in the inflammatory intestinal epithelia of individuals with Crohn's disease and downregulates the IRGM protective variant but not the risk-associated allele, implicating a synonymous polymorphism as a likely causal variant.
Abstract: Susceptibility to Crohn's disease, a complex inflammatory disease, is influenced by common variants at many loci. The common exonic synonymous SNP (c.313C>T) in IRGM, found in strong linkage disequilibrium with a deletion polymorphism, has been classified as non-causative because of the absence of an alteration in the IRGM protein sequence or splice sites. Here we show that a family of microRNAs (miRNAs), miR-196, is overexpressed in the inflammatory intestinal epithelia of individuals with Crohn's disease and downregulates the IRGM protective variant (c.313C) but not the risk-associated allele (c.313T). Subsequent loss of tight regulation of IRGM expression compromises control of intracellular replication of Crohn's disease-associated adherent invasive Escherichia coli by autophagy. These results suggest that the association of IRGM with Crohn's disease arises from a miRNA-based alteration in IRGM regulation that affects the efficacy of autophagy, thereby implicating a synonymous polymorphism as a likely causal variant.

Journal ArticleDOI
01 Feb 2011
TL;DR: Diaphragmatic weakness, injury, and atrophy occur rapidly in critically ill patients during MV, and are significantly correlated with the duration of ventilator support.
Abstract: Rationale: Diaphragmatic function is a major determinant of the ability to successfully wean patients from mechanical ventilation (MV). Paradoxically, MV itself results in a rapid loss of diaphragmatic strength in animals. However, very little is known about the time course or mechanistic basis for such a phenomenon in humans.Objectives: To determine in a prospective fashion the time course for development of diaphragmatic weakness during MV; and the relationship between MV duration and diaphragmatic injury or atrophy, and the status of candidate cellular pathways implicated in these phenomena.Methods: Airway occlusion pressure (TwPtr) generated by the diaphragm during phrenic nerve stimulation was measured in short-term (0.5 h; n = 6) and long-term (>5 d; n = 6) MV groups. Diaphragmatic biopsies obtained during thoracic surgery (MV for 2–3 h; n = 10) and from brain-dead organ donors (MV for 24–249 h; n = 15) were analyzed for ultrastructural injury, atrophy, and expression of proteolysis-related proteins...

Journal ArticleDOI
TL;DR: In this article, the authors assess the impacts of climate change on 2632 plant species across all major European mountain ranges, using high-resolution (ca. 100 m) species samples and data expressing four future climate scenarios.
Abstract: Continental-scale assessments of 21st century global impacts of climate change on biodiversity have forecasted range contractions for many species. These coarse resolution studies are, however, of limited relevance for projecting risks to biodiversity in mountain systems, where pronounced microclimatic variation could allow species to persist locally, and are ill-suited for assessment of species-specific threat in particular regions. Here, we assess the impacts of climate change on 2632 plant species across all major European mountain ranges, using high-resolution (ca. 100 m) species samples and data expressing four future climate scenarios. Projected habitat loss is greater for species distributed at higher elevations; depending on the climate scenario, we find 36-55% of alpine species, 31-51% of subalpine species and 19-46% of montane species lose more than 80% of their suitable habitat by 2070-2100. While our high-resolution analyses consistently indicate marked levels of threat to cold-adapted mountain florae across Europe, they also reveal unequal distribution of this threat across the various mountain ranges. Impacts on florae from regions projected to undergo increased warming accompanied by decreased precipitation, such as the Pyrenees and the Eastern Austrian Alps, will likely be greater than on florae in regions where the increase in temperature is less pronounced and rainfall increases concomitantly, such as in the Norwegian Scandes and the Scottish Highlands. This suggests that change in precipitation, not only warming, plays an important role in determining the potential impacts of climate change on vegetation.

Journal ArticleDOI
TL;DR: The transcriptional profile of the mucosa appears to interact with the colonic microbiota; this interaction appears to be lost in colon of patients with UC, which has different gene expression profiles and lower levels of biodiversity than their healthy twins.

Journal ArticleDOI
05 Aug 2011-Science
TL;DR: Fungal nutritional mode diversification suggests that the boreal forest biome originated via genetic coevolution of above- and below-ground biota through convergent evolution and divergence among fungal decomposers.
Abstract: Brown rot decay removes cellulose and hemicellulose from wood--residual lignin contributing up to 30% of forest soil carbon--and is derived from an ancestral white rot saprotrophy in which both lignin and cellulose are decomposed. Comparative and functional genomics of the "dry rot" fungus Serpula lacrymans, derived from forest ancestors, demonstrated that the evolution of both ectomycorrhizal biotrophy and brown rot saprotrophy were accompanied by reductions and losses in specific protein families, suggesting adaptation to an intercellular interaction with plant tissue. Transcriptome and proteome analysis also identified differences in wood decomposition in S. lacrymans relative to the brown rot Postia placenta. Furthermore, fungal nutritional mode diversification suggests that the boreal forest biome originated via genetic coevolution of above- and below-ground biota.

Journal ArticleDOI
TL;DR: The results suggest that the impacts generated by the production of methane from microalgae are strongly correlated with the electric consumption, which strongly competes with others biofuel productions.