scispace - formally typeset
Search or ask a question

Showing papers by "Institute for Systems Biology published in 2007"


Journal ArticleDOI
TL;DR: This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest.
Abstract: Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape.

2,313 citations


Journal ArticleDOI
26 Jul 2007-Nature
TL;DR: IL-21 is shown to be an autocrine cytokine that is sufficient and necessary for TH17 differentiation, and serves as a target for treating inflammatory diseases.
Abstract: After activation, CD4+ helper T (T(H)) cells differentiate into distinct effector subsets that are characterized by their unique cytokine expression and immunoregulatory function. During this differentiation, T(H)1 and T(H)2 cells produce interferon-gamma and interleukin (IL)-4, respectively, as autocrine factors necessary for selective lineage commitment. A distinct T(H) subset, termed T(HIL-17), T(H)17 or inflammatory T(H) (T(H)i), has been recently identified as a distinct T(H) lineage mediating tissue inflammation. T(H)17 differentiation is initiated by transforming growth factor-beta and IL-6 (refs 5-7) and reinforced by IL-23 (ref. 8), in which signal transduction and activators of transcription (STAT)3 and retinoic acid receptor-related orphan receptor (ROR)-gamma mediate the lineage specification. T(H)17 cells produce IL-17, IL-17F and IL-22, all of which regulate inflammatory responses by tissue cells but have no importance in T(H)17 differentiation. Here we show that IL-21 is another cytokine highly expressed by mouse T(H)17 cells. IL-21 is induced by IL-6 in activated T cells, a process that is dependent on STAT3 but not ROR-gamma. IL-21 potently induces T(H)17 differentiation and suppresses Foxp3 expression, which requires STAT3 and ROR-gamma, which is encoded by Rorc. IL-21 deficiency impairs the generation of T(H)17 cells and results in protection against experimental autoimmune encephalomyelitis. IL-21 is therefore an autocrine cytokine that is sufficient and necessary for T(H)17 differentiation, and serves as a target for treating inflammatory diseases.

1,509 citations


Journal ArticleDOI
13 Apr 2007-Science
TL;DR: The genome sequence of an Indian-origin Macaca mulatta female is determined and compared with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families.
Abstract: The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.

1,297 citations


Journal ArticleDOI
TL;DR: The processes and principles underpinning the development of guidance modules for reporting the use of techniques such as gel electrophoresis and mass spectrometry are described and the ramifications for various interest groups such as experimentalists, funders, publishers and the private sector are discussed.
Abstract: Both the generation and the analysis of proteomics data are now widespread, and high-throughput approaches are commonplace. Protocols continue to increase in complexity as methods and technologies evolve and diversify. To encourage the standardized collection, integration, storage and dissemination of proteomics data, the Human Proteome Organization's Proteomics Standards Initiative develops guidance modules for reporting the use of techniques such as gel electrophoresis and mass spectrometry. This paper describes the processes and principles underpinning the development of these modules; discusses the ramifications for various interest groups such as experimentalists, funders, publishers and the private sector; addresses the issue of overlap with other reporting guidelines; and highlights the criticality of appropriate tools and resources in enabling 'MIAPE-compliant' reporting.

703 citations


Journal ArticleDOI
TL;DR: Using >600,000 peptide identifications generated by four proteomic platforms, it is shown that characteristic physicochemical properties of these peptides were used to develop a computational tool that can predict proteotypic peptides for any protein from any organism, for a given platform, with >85% cumulative accuracy.
Abstract: Mass spectrometry-based quantitative proteomics has become an important component of biological and clinical research. Although such analyses typically assume that a protein's peptide fragments are observed with equal likelihood, only a few so-called 'proteotypic' peptides are repeatedly and consistently identified for any given protein present in a mixture. Using >600,000 peptide identifications generated by four proteomic platforms, we empirically identified >16,000 proteotypic peptides for 4,030 distinct yeast proteins. Characteristic physicochemical properties of these peptides were used to develop a computational tool that can predict proteotypic peptides for any protein from any organism, for a given platform, with >85% cumulative accuracy. Possible applications of proteotypic peptides include validation of protein identifications, absolute quantification of proteins, annotation of coding sequences in genomes, and characterization of the physical principles governing key elements of mass spectrometric workflows (e.g., digestion, chromatography, ionization and fragmentation).

701 citations


Journal ArticleDOI
TL;DR: A strain selection framework is proposed, based on robust phylogenetic markers, which will allow for systematic and comprehensive evaluation of new tools for tuberculosis control and suggest strain-specific differences in virulence and immunogenicity.
Abstract: New tools for controlling tuberculosis are urgently needed. Despite our emerging understanding of the biogeography of Mycobacterium tuberculosis, the implications for development of new diagnostics, drugs, and vaccines is unknown. M tuberculosis has a clonal genetic population structure that is geographically constrained. Evidence suggests strain-specific differences in virulence and immunogenicity in light of this global phylogeography. We propose a strain selection framework, based on robust phylogenetic markers, which will allow for systematic and comprehensive evaluation of new tools for tuberculosis control.

693 citations


Journal ArticleDOI
19 Jul 2007-Neuron
TL;DR: It is suggested that SWI/SNF-like complexes in vertebrates achieve biological specificity by combinatorial assembly of their subunits by preventing the subunit switch impairs neuronal differentiation.

674 citations


Journal ArticleDOI
TL;DR: This review discusses critical issues related to data processing and analysis in proteomics and describes available methods and tools and places special emphasis on the elaboration of results that are supported by sound statistical arguments.
Abstract: The analysis of the large amount of data generated in mass spectrometry-based proteomics experiments represents a significant challenge and is currently a bottleneck in many proteomics projects. In this review we discuss critical issues related to data processing and analysis in proteomics and describe available methods and tools. We place special emphasis on the elaboration of results that are supported by sound statistical arguments.

664 citations


Journal ArticleDOI
TL;DR: The results suggest that the three methods detect different, partially overlapping segments of the phosphoproteome and that, at present, no single method is sufficient for a comprehensive phosphopeptides analysis.
Abstract: The ability to routinely analyze and quantitatively measure changes in protein phosphorylation on a proteome-wide scale is essential for biological and clinical research. We assessed the ability of three common phosphopeptide isolation methods (phosphoramidate chemistry (PAC), immobilized metal affinity chromatography (IMAC) and titanium dioxide) to reproducibly, specifically and comprehensively isolate phosphopeptides from complex mixtures. Phosphopeptides were isolated from aliquots of a tryptic digest of the cytosolic fraction of Drosophila melanogaster Kc167 cells and analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry. Each method reproducibly isolated phosphopeptides. The methods, however, differed in their specificity of isolation and, notably, in the set of phosphopeptides isolated. The results suggest that the three methods detect different, partially overlapping segments of the phosphoproteome and that, at present, no single method is sufficient for a comprehensive phosphoproteome analysis.

581 citations


Journal ArticleDOI
TL;DR: An open‐source, functionally complete, high‐throughput and readily extensible MS/MS spectral searching tool, SpectraST, developed, which vastly outperforms the sequence search engine SEQUEST in terms of speed and the ability to discriminate good and bad hits.
Abstract: A notable inefficiency of shotgun proteomics experiments is the repeated rediscovery of the same identifiable peptides by sequence database searching methods, which often are time-consuming and error-prone. A more precise and efficient method, in which previously observed and identified peptide MS/MS spectra are catalogued and condensed into searchable spectral libraries to allow new identifications by spectral matching, is seen as a promising alternative. To that end, an open-source, functionally complete, high-throughput and readily extensible MS/MS spectral searching tool, SpectraST, was developed. A high-quality spectral library was constructed by combining the high-confidence identifications of millions of spectra taken from various data repositories and searched using four sequence search engines. The resulting library consists of over 30,000 spectra for Saccharomyces cerevisiae. Using this library, SpectraST vastly outperforms the sequence search engine SEQUEST in terms of speed and the ability to discriminate good and bad hits. A unique advantage of SpectraST is its full integration into the popular Trans Proteomic Pipeline suite of software, which facilitates user adoption and provides important functionalities such as peptide and protein probability assignment, quantification, and data visualization. This method of spectral library searching is especially suited for targeted proteomics applications, offering superior performance to traditional sequence searching.

511 citations


Journal ArticleDOI
TL;DR: By analysis of the functional connectivity of the metabolites in the network, the bow‐tie structure, which was found previously by structure analysis, is reconfirmed and the distribution of the disease related genes in thenetwork suggests that the IN (substrates) subset of the bow-tie structure has more flexibility than other parts.
Abstract: A better understanding of human metabolism and its relationship with diseases is an important task in human systems biology studies. In this paper, we present a high-quality human metabolic network manually reconstructed by integrating genome annotation information from different databases and metabolic reaction information from literature. The network contains nearly 3000 metabolic reactions, which were reorganized into about 70 human-specific metabolic pathways according to their functional relationships. By analysis of the functional connectivity of the metabolites in the network, the bow-tie structure, which was found previously by structure analysis, is reconfirmed. Furthermore, the distribution of the disease related genes in the network suggests that the IN (substrates) subset of the bow-tie structure has more flexibility than other parts.

Journal ArticleDOI
TL;DR: Observations show that intestinal polyposis is initiated by PTEN-deficient ISCs that undergo excessive proliferation driven by Akt activation and nuclear localization of β-catenin.
Abstract: Intestinal polyposis, a precancerous neoplasia, results primarily from an abnormal increase in the number of crypts, which contain intestinal stem cells (ISCs). In mice, widespread deletion of the tumor suppressor Phosphatase and tensin homolog (PTEN) generates hamartomatous intestinal polyps with epithelial and stromal involvement. Using this model, we have established the relationship between stem cells and polyp and tumor formation. PTEN helps govern the proliferation rate and number of ISCs and loss of PTEN results in an excess of ISCs. In PTEN-deficient mice, excess ISCs initiate de novo crypt formation and crypt fission, recapitulating crypt production in fetal and neonatal intestine. The PTEN-Akt pathway probably governs stem cell activation by helping control nuclear localization of the Wnt pathway effector β-catenin. Akt phosphorylates β-catenin at Ser552, resulting in a nuclear-localized form in ISCs. Our observations show that intestinal polyposis is initiated by PTEN-deficient ISCs that undergo excessive proliferation driven by Akt activation and nuclear localization of β-catenin.

Journal ArticleDOI
TL;DR: The unprecedented sensitivity of the mass spectrometric analysis of minimally fractionated plasma samples is the result of the significantly reduced sample complexity of the isolated N-glycosites compared with whole plasma proteome digests and the selectivity of the MRM process.

Journal ArticleDOI
TL;DR: An open source software tool, SuperHirn, that comprises a set of modules to process LC‐MS data acquired on a high resolution mass spectrometer, which automatically detects profiling trends in an unsupervised manner and is able to associate proteins to their correct theoretical dilution profile.
Abstract: Label-free quantification of high mass resolution LC-MS data has emerged as a promising technology for proteome analysis. Computational methods are required for the accurate extraction of peptide signals from LC-MS data and the tracking of these features across the measurements of different samples. We present here an open source software tool, SuperHirn, that comprises a set of modules to process LC-MS data acquired on a high resolution mass spectrometer. The program includes newly developed functionalities to analyze LC-MS data such as feature extraction and quantification, LC-MS similarity analysis, LC-MS alignment of multiple datasets, and intensity normalization. These program routines extract profiles of measured features and comprise tools for clustering and classification analysis of the profiles. SuperHirn was applied in an MS1-based profiling approach to a benchmark LC-MS dataset of complex protein mixtures with defined concentration changes. We show that the program automatically detects profiling trends in an unsupervised manner and is able to associate proteins to their correct theoretical dilution profile.

Journal ArticleDOI
28 Dec 2007-Cell
TL;DR: This study supports the claim that the high degree of connectivity within biological and EF networks will enable the construction of similar models for any organism from relatively modest numbers of experiments.

Journal ArticleDOI
TL;DR: A protocol for solid-phase extraction of N-linked glycopeptides and subsequent identification of N -linked glycosylation sites (N-glycosites) by tandem mass spectrometry is described.
Abstract: Protein glycosylation is a common post-translational modification and has been increasingly recognized as one of the most prominent biochemical alterations associated with malignant transformation and tumorigenesis. N-linked glycosylation is prevalent in proteins on the extracellular membrane, and many clinical biomarkers and therapeutic targets are glycoproteins. Here, we describe a protocol for solid-phase extraction of N-linked glycopeptides and subsequent identification of N-linked glycosylation sites (N-glycosites) by tandem mass spectrometry. The method oxidizes the carbohydrates in glycopeptides into aldehydes, which can be immobilized on a solid support. The N-linked glycopeptides are then optionally labeled with a stable isotope using deuterium-labeled succinic anhydride and the peptide moieties are released by peptide-N-glycosidase. In a single analysis, the method identifies hundreds of N-linked glycoproteins, the site(s) of N-linked glycosylation and the relative quantity of the identified glycopeptides.

Journal ArticleDOI
TL;DR: Two approaches provide significant new insights into both tissue-specific and general transcriptional targets in a crucial Shh-mediated patterning process.
Abstract: Sonic hedgehog (Shh) acts as a morphogen to mediate the specification of distinct cell identities in the ventral neural tube through a Gli-mediated (Gli1-3) transcriptional network. Identifying Gli targets in a systematic fashion is central to the understanding of the action of Shh. We examined this issue in differentiating neural progenitors in mouse. An epitope-tagged Gli-activator protein was used to directly isolate cis-regulatory sequences by chromatin immunoprecipitation (ChIP). ChIP products were then used to screen custom genomic tiling arrays of putative Hedgehog (Hh) targets predicted from transcriptional profiling studies, surveying 50-150 kb of non-transcribed sequence for each candidate. In addition to identifying expected Gli-target sites, the data predicted a number of unreported direct targets of Shh action. Transgenic analysis of binding regions in Nkx2.2, Nkx2.1 (Titf1) and Rab34 established these as direct Hh targets. These data also facilitated the generation of an algorithm that improved in silico predictions of Hh target genes. Together, these approaches provide significant new insights into both tissue-specific and general transcriptional targets in a crucial Shh-mediated patterning process.

Journal ArticleDOI
TL;DR: In macrophages infected with Salmonella typhimurium or Legionella pneumophila, Ipaf becomes activated in response to flagellin that appears to be delivered to the cytosol via specific virulence factor transport systems.
Abstract: The innate immune system precisely modulates the intensity of immune activation in response to infection. Flagellin is a microbe-associated molecular pattern that is present on both pathogenic and nonpathogenic bacteria. Macrophages and dendritic cells are able to determine the virulence of flagellated bacteria by sensing whether flagellin remains outside the mammalian cell, or if it gains access to the cytosol. Extracellular flagellin is detected by TLR5, which induces expression of proinflammatory cytokines, while flagellin within the cytosol of macrophages is detected through the Nod-like receptor (NLR) Ipaf, which activates caspase-1. In macrophages infected with Salmonella typhimurium or Legionella pneumophila, Ipaf becomes activated in response to flagellin that appears to be delivered to the cytosol via specific virulence factor transport systems (the SPI1 type III secretion system (T3SS) and the Dot/Icm type IV secretion system (T4SS), respectively). Thus, TLR5 responds more generally to flagellated bacteria, while Ipaf responds to bacteria that express both flagellin and virulence factors.

Journal ArticleDOI
TL;DR: This work describes a rapid affinity-purification method for efficient isolation of the subcomplexes that dynamically organize different RNP biogenesis pathways in Saccharomyces cerevisiae that overcomes many of the previous limitations to produce large RNP interactomes with almost no contamination.
Abstract: The study of the dynamic interactome of cellular ribonucleoprotein (RNP) particles has been hampered by severe methodological limitations. In particular, the affinity purification of intact RNP complexes from cell lysates suffers from RNA degradation, loss of interacting macromolecules and poor overall yields. Here we describe a rapid affinity-purification method for efficient isolation of the subcomplexes that dynamically organize different RNP biogenesis pathways in Saccharomyces cerevisiae. Our method overcomes many of the previous limitations to produce large RNP interactomes with almost no contamination.

Journal ArticleDOI
TL;DR: It is shown that high-quality proteomics data provide crucial information to amend genome annotation and to confirm many predicted gene models, and this library of proteotypic peptides should enable fast, targeted and quantitative proteomic studies to elucidate the systems biology of this model organism.
Abstract: Understanding how proteins and their complex interaction networks convert the genomic information into a dynamic living organism is a fundamental challenge in biological sciences. As an important step towards understanding the systems biology of a complex eukaryote, we cataloged 63% of the predicted Drosophila melanogaster proteome by detecting 9,124 proteins from 498,000 redundant and 72,281 distinct peptide identifications. This unprecedented high proteome coverage for a complex eukaryote was achieved by combining sample diversity, multidimensional biochemical fractionation and analysis-driven experimentation feedback loops, whereby data collection is guided by statistical analysis of prior data. We show that high-quality proteomics data provide crucial information to amend genome annotation and to confirm many predicted gene models. We also present experimentally identified proteotypic peptides matching approximately 50% of D. melanogaster gene models. This library of proteotypic peptides should enable fast, targeted and quantitative proteomic studies to elucidate the systems biology of this model organism.

Patent
09 Aug 2007
TL;DR: In this article, the authors present compositions comprising organ-specific proteins and transcripts encoding the same, detection reagents for detecting such proteins, and diagnostic panels, kits and arrays for measuring organspecific proteins/transcripts in blood, biological tissue or other biological fluid.
Abstract: The present invention relates generally to methods for identifying and using organ-specific proteins and transcripts. The present invention further provides compositions comprising organ-specific proteins and transcripts encoding the same, detection reagents for detecting such proteins and transcripts, and diagnostic panels, kits and arrays for measuring organ-specific proteins/transcripts in blood, biological tissue or other biological fluid.

Journal ArticleDOI
TL;DR: The upregulation of the DosR regulon may confer an adaptive advantage for growth in microaerophilic or anaerobic environments encountered by the bacillus during infection and thus may be related to the epidemiological phenomena associated with this important strain lineage.
Abstract: The Beijing family of Mycobacterium tuberculosis strains has been associated with epidemic spread and an increased likelihood of developing drug resistance. The characteristics that predispose this family to such clinical outcomes have not been identified, although one potential candidate, the phenolic glycolipid PGL-tb, has been shown to mediate a fulminant lethal disease in mice and rabbits due to lipid-mediated immunosuppression. However, PGL-tb is not uniformly expressed throughout the Beijing lineage and may not be the only unique virulence trait associated with this family. In an attempt to define phenotypes common to all Beijing strains, we interrogated a carefully selected set of isolates representing the five extant lineages of the Beijing family. Comparison of lipid production in this set revealed that all Beijing strains accumulated large quantities of triacylglycerides in in vitro aerobic culture. This accumulation was found to be coincident with upregulation of Rv3130c, whose product was previously characterized as a triacylglyceride synthase. Rv3130c is a member of the DosR-controlled regulon of M. tuberculosis, and further examination revealed that several members of this regulon were upregulated throughout this strain family. The upregulation of the DosR regulon may confer an adaptive advantage for growth in microaerophilic or anaerobic environments encountered by the bacillus during infection and thus may be related to the epidemiological phenomena associated with this important strain lineage.

Journal ArticleDOI
TL;DR: A strong association of TLR2 SNP T597C with the development of TBM and miliary TB is demonstrated and indicates thatTLR2 influences the dissemination of M. tuberculosis.
Abstract: A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis

Journal ArticleDOI
TL;DR: This work presents PhosphoPep, a database containing more than 10 000 unique high‐confidence phosphorylation sites mapping to nearly 3500 gene models and 4600 distinct phosphoproteins of the Drosophila melanogaster Kc167 cell line, which constitutes the most comprehensive phosphorylated map of any single source to date.
Abstract: The ability to analyze and understand the mechanisms by which cells process information is a key question of systems biology research. Such mechanisms critically depend on reversible phosphorylation of cellular proteins, a process that is catalyzed by protein kinases and phosphatases. Here, we present PhosphoPep, a database containing more than 10 000 unique high-confidence phosphorylation sites mapping to nearly 3500 gene models and 4600 distinct phosphoproteins of the Drosophila melanogaster Kc167 cell line. This constitutes the most comprehensive phosphorylation map of any single source to date. To enhance the utility of PhosphoPep, we also provide an array of software tools that allow users to browse through phosphorylation sites on single proteins or pathways, to easily integrate the data with other, external data types such as protein-protein interactions and to search the database via spectral matching. Finally, all data can be readily exported, for example, for targeted proteomics approaches and the data thus generated can be again validated using PhosphoPep, supporting iterative cycles of experimentation and analysis that are typical for systems biology research.

Journal ArticleDOI
TL;DR: First evidence that TLR5 regulates the innate immune response in the urinary tract and is essential for an effective murine in vivo immune response to an extracellular pathogen is presented.
Abstract: Although TLR5 regulates the innate immune response to bacterial flagellin, it is unclear whether its function is essential during in vivo murine infections. To examine this question, we challenged Tlr5(-/-) mice transurethrally with Escherichia coli. At 2 days postinfection, wild-type mice exhibited increased inflammation of the bladder in comparison to Tlr5(-/-) mice. By day 5 postinfection, Tlr5(-/-) mice had significantly more bacteria in the bladders and kidneys in comparison to wild-type mice and showed increased inflammation in both organs. In addition, flagellin induced high levels of cytokine and chemokine expression in the bladder that was dependent on TLR5. Together, these data represent the first evidence that TLR5 regulates the innate immune response in the urinary tract and is essential for an effective murine in vivo immune response to an extracellular pathogen.

Journal ArticleDOI
TL;DR: These studies localize flagellin recognition to a conserved surface on the modeled TLR5 structure, providing detailed analysis of the interaction of a TLR with its ligand and suggest that ligand binding at the β sheets results in TLR activation and provide a new framework for understanding TLR–agonist interactions.
Abstract: The molecular basis for Toll-like receptor (TLR) recognition of microbial ligands is unknown. We demonstrate that mouse and human TLR5 discriminate between different flagellins, and we use this difference to map the flagellin recognition site on TLR5 to 228 amino acids of the extracellular domain. Through molecular modeling of the TLR5 ectodomain, we identify two conserved surface-exposed regions. Mutagenesis studies demonstrate that naturally occurring amino acid variation in TLR5 residue 268 is responsible for human and mouse discrimination between flagellin molecules. Mutations within one conserved surface identify residues D295 and D367 as important for flagellin recognition. These studies localize flagellin recognition to a conserved surface on the modeled TLR5 structure, providing detailed analysis of the interaction of a TLR with its ligand. These findings suggest that ligand binding at the β sheets results in TLR activation and provide a new framework for understanding TLR–agonist interactions.

Journal ArticleDOI
TL;DR: Observations demonstrate that variation in the inflammatory response to bacterial lipopeptides is regulated by a common TLR1 transmembrane domain polymorphism that could potentially impact the innate immune response and clinical susceptibility to a wide spectrum of pathogens.
Abstract: Toll-like receptors (TLR) are critical mediators of the immune response to pathogens and human polymorphisms in this gene family regulate inflammatory pathways and are associated with susceptibility to infection. Lipopeptides are present in a wide variety of microbes and stimulate immune responses through TLR1/2 or TLR2/6 heterodimers. It is not currently known whether polymorphisms in TLR1 regulate the innate immune response. We stimulated human whole blood with triacylated lipopeptide, a ligand for TLR1/2 heterodimers, and found substantial inter-individual variation in the immune response. We sequenced the coding region of TLR1 and found a non-synonymous polymorphism, I602S (base pair T1805G), that regulated signalling. In comparison to TLR1_602S, the 602I variant mediated substantially greater basal and lipopeptide-induced NF-kappaB signalling in transfected HEK293 cells. These signalling differences among TLR1 variants were also found with stimulation by extracts of Mycobacterium tuberculosis. Furthermore, individuals with the 602II genotype produced substantially more IL-6 than those with the 602SS variant in a lipopeptide-stimulated whole-blood cytokine assay. Together, these observations demonstrate that variation in the inflammatory response to bacterial lipopeptides is regulated by a common TLR1 transmembrane domain polymorphism that could potentially impact the innate immune response and clinical susceptibility to a wide spectrum of pathogens.

Journal ArticleDOI
TL;DR: Evidence is provided that tissue-derived proteins are both present and detectable in plasma via direct mass spectrometric analysis of captured glycopeptides and thus provide a conceptual basis for plasma protein biomarker discovery and analysis.

Journal ArticleDOI
TL;DR: It is reported for the first time that TLR2 plays a critical role in maintaining intestinal mucosal integrity during infection by a bacterial pathogen.
Abstract: Inflammatory bowel diseases and infectious gastroenteritis likely occur when the integrity of intestinal barriers is disrupted allowing luminal bacterial products to cross into the intestinal mucosa, stimulating immune cells and triggering inflammation. While specific Toll-like receptors (TLR) are involved in the generation of inflammatory responses against enteric bacteria, their contributions to the maintenance of intestinal mucosal integrity are less clear. These studies investigated the role of TLR2 in a model of murine colitis induced by the bacterial pathogen Citrobacter rodentium. C. rodentium supernatants specifically activated TLR2 in vitro while infected TLR2-/- mice suffered a lethal colitis coincident with colonic mucosal ulcerations, bleeding and increased cell death but not increased pathogen burden. TLR2-/- mice suffered impaired epithelial barrier function mediated via zonula occludens (ZO)-1 in naive mice and claudin-3 in infected mice, suggesting this could underlie their susceptibility. TLR2 deficiency was also associated with impaired production of IL-6 by bone marrow-derived macrophages and infected colons cultured ex vivo. As IL-6 has antiapoptotic and epithelial repair capabilities, its reduced expression could contribute to the impaired mucosal integrity. These studies report for the first time that TLR2 plays a critical role in maintaining intestinal mucosal integrity during infection by a bacterial pathogen.

Journal ArticleDOI
TL;DR: A robust and general shotgun glycoproteomics approach to comprehensively profile Glycoproteins in complex biological mixtures is presented and can be applied equally well to O-glycoprotein analysis.