scispace - formally typeset
Search or ask a question
Institution

Institute for Systems Biology

NonprofitSeattle, Washington, United States
About: Institute for Systems Biology is a nonprofit organization based out in Seattle, Washington, United States. It is known for research contribution in the topics: Population & Proteomics. The organization has 1277 authors who have published 2777 publications receiving 353165 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: PBNs and a certain subclass of DBNs can represent the same joint probability distribution over their common variables, and the introduced relationships between the models extend the collection of analysis tools for both model classes.

121 citations

Journal ArticleDOI
TL;DR: This paper applied a multiplexed, reduced genome sequencing strategy (restriction site−associated sequencing or RAD-seq) to genotype a large collection of S. cerevisiae strains isolated from a wide range of geographical locations and environmental niches, finding diversity among these strains is principally organized by geography, with European, North American, Asian, and African populations defining the major axes of genetic variation.
Abstract: The budding yeast Saccharomyces cerevisiae is important for human food production and as a model organism for biological research. The genetic diversity contained in the global population of yeast strains represents a valuable resource for a number of fields, including genetics, bioengineering, and studies of evolution and population structure. Here, we apply a multiplexed, reduced genome sequencing strategy (restriction site−associated sequencing or RAD-seq) to genotype a large collection of S. cerevisiae strains isolated from a wide range of geographical locations and environmental niches. The method permits the sequencing of the same 1% of all genomes, producing a multiple sequence alignment of 116,880 bases across 262 strains. We find diversity among these strains is principally organized by geography, with European, North American, Asian, and African/S. E. Asian populations defining the major axes of genetic variation. At a finer scale, small groups of strains from cacao, olives, and sake are defined by unique variants not present in other strains. One population, containing strains from a variety of fermentations, exhibits high levels of heterozygosity and a mixture of alleles from European and Asian populations, indicating an admixed origin for this group. We propose a model of geographic differentiation followed by human-associated admixture, primarily between European and Asian populations and more recently between European and North American populations. The large collection of genotyped yeast strains characterized here will provide a useful resource for the broad community of yeast researchers.

121 citations

Journal ArticleDOI
TL;DR: This work uses a new approach to non-linear dynamics to formulate a new mathematical model, performed a theoretical study on the phage λ life cycle, and solves the crucial part of this puzzle of robustness and stability of the genetic circuitry for the lysis-lysogeny switch.
Abstract: The biology and behavior of bacteriophage λ regulation have been the focus of classical investigations of molecular control of gene expression. Both qualitative and quantitative aspects of this behavior have been systematically characterized experimentally. Complete understanding of the robustness and stability of the genetic circuitry for the lysis-lysogeny switch remains an unsolved puzzle. It is an excellent test case for our understanding of biological behavior of an integrated network based on its physical, chemical, DNA, protein, and functional properties. We have used a new approach to non-linear dynamics to formulate a new mathematical model, performed a theoretical study on the phage λ life cycle, and solved the crucial part of this puzzle. We find a good quantitative agreement between the theoretical calculation and published experimental observations in the protein number levels, the lysis frequency in the lysogen culture, and the lysogenization frequency for mutants of OR. We also predict the desired robustness for the λ genetic switch. We believe that this is the first successful example in the quantitative calculation of robustness and stability of the phage λ regulatory network, one of the simplest and most well-studied regulatory systems.

121 citations

Journal ArticleDOI
TL;DR: It is found that this latest PeptideAtlas build includes at least one peptide for each of ~12500 Swiss-Prot entries, leaving ~7500 gene products yet to be confidently cataloged, and characterize these "PA-unseen" proteins in terms of tissue localization, transcript abundance, and Gene Ontology enrichment.
Abstract: The Human Proteome Project was launched in September 2010 with the goal of characterizing at least one protein product from each protein-coding gene. Here we assess how much of the proteome has been detected to date via tandem mass spectrometry by analyzing PeptideAtlas, a compendium of human derived LC-MS/MS proteomics data from many laboratories around the world. All data sets are processed with a consistent set of parameters using the Trans-Proteomic Pipeline and subjected to a 1% protein FDR filter before inclusion in PeptideAtlas. Therefore, PeptideAtlas contains only high confidence protein identifications. To increase proteome coverage, we explored new comprehensive public data sources for data likely to add new proteins to the Human PeptideAtlas. We then folded these data into a Human PeptideAtlas 2012 build and mapped it to Swiss-Prot, a protein sequence database curated to contain one entry per human protein coding gene. We find that this latest PeptideAtlas build includes at least one peptide for each of ~12500 Swiss-Prot entries, leaving ~7500 gene products yet to be confidently cataloged. We characterize these "PA-unseen" proteins in terms of tissue localization, transcript abundance, and Gene Ontology enrichment, and propose reasons for their absence from PeptideAtlas and strategies for detecting them in the future.

121 citations

Journal ArticleDOI
TL;DR: It is demonstrated, using as examples two experimental investigations with complex designs, that a simultaneous statistical modeling of all the relevant features and conditions yields a higher sensitivity of protein significance analysis and a higher accuracy of protein quantification as compared to commonly employed alternatives.
Abstract: Background Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) is widely used for quantitative proteomic investigations. The typical output of such studies is a list of identified and quantified peptides. The biological and clinical interest is, however, usually focused on quantitative conclusions at the protein level. Furthermore, many investigations ask complex biological questions by studying multiple interrelated experimental conditions. Therefore, there is a need in the field for generic statistical models to quantify protein levels even in complex study designs.

120 citations


Authors

Showing all 1292 results

NameH-indexPapersCitations
Younan Xia216943175757
Ruedi Aebersold182879141881
David Haussler172488224960
Steven P. Gygi172704129173
Nahum Sonenberg167647104053
Leroy Hood158853128452
Mark H. Ellisman11763755289
Wei Zhang112118993641
John Ralph10944239238
Eric H. Davidson10645447058
James R. Heath10342558548
Alan Aderem9924646682
Anne-Claude Gingras9733640714
Trey Ideker9730672276
Michael H. Gelb9450634714
Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202260
2021216
2020204
2019188
2018168