scispace - formally typeset
Search or ask a question
Institution

Institute for Systems Biology

NonprofitSeattle, Washington, United States
About: Institute for Systems Biology is a nonprofit organization based out in Seattle, Washington, United States. It is known for research contribution in the topics: Population & Proteomics. The organization has 1277 authors who have published 2777 publications receiving 353165 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Evidence is presented that, downstream of TGF-β signaling, microRNAs of the miR-23a cluster and the transcription factor Zeb1 could have roles in mediating an epithelial to mesenchymal transition (EMT) and the resultant persistence of mesenchyal cells in these diseases.
Abstract: The molecular pathways involved in the interstitial lung diseases (ILDs) are poorly understood. Systems biology approaches, with global expression data sets, were used to identify perturbed gene networks, to gain some understanding of the underlying mechanisms, and to develop specific hypotheses relevant to these chronic lung diseases. Lung tissue samples from patients with different types of ILD were obtained from the Lung Tissue Research Consortium and total cell RNA was isolated. Global mRNA and microRNA were profiled by hybridization and amplification-based methods. Differentially expressed genes were compiled and used to identify critical signaling pathways and potential biomarkers. Modules of genes were identified that formed a regulatory network, and studies were performed on cultured cells in vitro for comparison with the in vivo results. By profiling mRNA and microRNA (miRNA) expression levels, we found subsets of differentially expressed genes that distinguished patients with ILDs from controls and that correlated with different disease stages and subtypes of ILDs. Network analysis, based on pathway databases, revealed several disease-associated gene modules, involving genes from the TGF-β, Wnt, focal adhesion, and smooth muscle actin pathways that are implicated in advancing fibrosis, a critical pathological process in ILDs. A more comprehensive approach was also adapted to construct a putative global gene regulatory network based on the perturbation of key regulatory elements, transcription factors and microRNAs. Our data underscores the importance of TGF-β signaling and the persistence of smooth muscle actin-containing fibroblasts in these diseases. We present evidence that, downstream of TGF-β signaling, microRNAs of the miR-23a cluster and the transcription factor Zeb1 could have roles in mediating an epithelial to mesenchymal transition (EMT) and the resultant persistence of mesenchymal cells in these diseases. We present a comprehensive overview of the molecular networks perturbed in ILDs, discuss several potential key molecular regulatory circuits, and identify microRNA species that may play central roles in facilitating the progression of ILDs. These findings advance our understanding of these diseases at the molecular level, provide new molecular signatures in defining the specific characteristics of the diseases, suggest new hypotheses, and reveal new potential targets for therapeutic intervention.

116 citations

Journal ArticleDOI
TL;DR: A library generation workflow that leverages fragmentation and retention time prediction to build libraries containing every peptide in a proteome, and then refines those libraries with empirical data is demonstrated.
Abstract: Data-independent acquisition approaches typically rely on experiment-specific spectrum libraries, requiring offline fractionation and tens to hundreds of injections. We demonstrate a library generation workflow that leverages fragmentation and retention time prediction to build libraries containing every peptide in a proteome, and then refines those libraries with empirical data. Our method specifically enables rapid, experiment-specific library generation for non-model organisms, which we demonstrate using the malaria parasite Plasmodium falciparum, and non-canonical databases, which we show by detecting missense variants in HeLa.

116 citations

Journal ArticleDOI
TL;DR: This metabolite profiling-based strategy was used to design a targeted, low cost nutrient feed that increased cell biomass by 35% and doubled the antibody titer, and can be applied universally to the optimization of production of commercially important biopharmaceuticals.
Abstract: Chinese hamster ovary (CHO) cells are the primary platform for commercial expression of recombinant therapeutic proteins. Obtaining maximum production from the expression platform requires optimal cell culture medium (and associated nutrient feeds). We have used metabolite profiling to define the balance of intracellular and extracellular metabolites during the production process of a CHO cell line expressing a recombinant IgG4 antibody. Using this metabolite profiling approach, it was possible to identify nutrient limitations, which acted as bottlenecks for antibody production, and subsequently develop a simple feeding regime to relieve these metabolic bottlenecks. This metabolite profiling-based strategy was used to design a targeted, low cost nutrient feed that increased cell biomass by 35% and doubled the antibody titer. This approach, with the potential for utilization in non-specialized laboratories, can be applied universally to the optimization of production of commercially important biopharmaceuticals.

116 citations

ComponentDOI
21 Dec 2018-Science
TL;DR: This work used cryo-electron microscopy, chemical crosslinking-mass spectrometry and biochemical reconstitution to determine the complete molecular architecture of TFIID and define the conformational landscape of T FIID in the process of TATA-box binding protein (TBP) loading onto promoter DNA.
Abstract: The general transcription factor IID (TFIID) is a critical component of the eukaryotic transcription preinitiation complex (PIC) and is responsible for recognizing the core promoter DNA and initiating PIC assembly. We used cryo-electron microscopy (cryo-EM), chemical crosslinking-mass spectrometry (CX-MS) and biochemical reconstitution to determine the complete molecular architecture of TFIID and define the conformational landscape of TFIID in the process of TATA-box binding protein (TBP) loading onto promoter DNA. Our structural analysis revealed five structural states of TFIID in the presence of TFIIA and promoter DNA, showing that the initial binding of TFIID to the downstream promoter positions the upstream DNA and facilitates scanning of TBP for a TATA-box and the subsequent engagement of the promoter. Our findings provide a mechanistic model for the specific loading of TBP by TFIID onto the promoter.

116 citations

Posted ContentDOI
14 Sep 2016-bioRxiv
TL;DR: It is demonstrated that using SWATH-MS the authors can consistently detect and quantify more than 4,000 proteins from HEK293 cells and that the quantitative protein data generated across laboratories is reproducible.
Abstract: Quantitative proteomics employing mass spectrometry has become an indispensable tool in basic and applied life science research. Methods based on data-dependent acquisition have proved extremely valuable for qualitative proteome analysis but historically have struggled to achieve reproducible quantitative data if large sample cohorts are comparatively analyzed. Targeted proteomics, most commonly implemented as selected reaction monitoring, has emerged as a powerful alternative and succeeded in providing a data independent approach for reproducible quantitative proteomics data but is limited in the number of proteins quantified. SWATH-MS is a recently introduced technique consisting of a data-independent acquisition and a targeted data analysis strategy that aims to maintain the favorable quantitative characteristics (accuracy, sensitivity, specificity) achieved in targeted proteomics but on the scale of thousands of proteins. While previous SWATH-MS studies have shown high intra-lab reproducibility, this has not been evaluated on an inter-lab basis. In this multi-laboratory evaluation study using data from 11 sites worldwide, we have demonstrated that using SWATH-MS we can consistently detect and quantify more than 4,000 proteins from HEK293 cells and that the quantitative protein data generated across laboratories is reproducible. Using synthetic peptide dilution series, we have shown that the sensitivity, dynamic range and reproducibility established with SWATH-MS methods are also uniformly achieved across labs. This study demonstrates that SWATH-MS is a reproducible and accurate technique that can be confidently deployed for large-scale protein quantification in life science research.

116 citations


Authors

Showing all 1292 results

NameH-indexPapersCitations
Younan Xia216943175757
Ruedi Aebersold182879141881
David Haussler172488224960
Steven P. Gygi172704129173
Nahum Sonenberg167647104053
Leroy Hood158853128452
Mark H. Ellisman11763755289
Wei Zhang112118993641
John Ralph10944239238
Eric H. Davidson10645447058
James R. Heath10342558548
Alan Aderem9924646682
Anne-Claude Gingras9733640714
Trey Ideker9730672276
Michael H. Gelb9450634714
Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202260
2021216
2020204
2019188
2018168