scispace - formally typeset
Search or ask a question
Institution

Institute for Systems Biology

NonprofitSeattle, Washington, United States
About: Institute for Systems Biology is a nonprofit organization based out in Seattle, Washington, United States. It is known for research contribution in the topics: Population & Proteomics. The organization has 1277 authors who have published 2777 publications receiving 353165 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: ITEP harnesses the power of comparative genomics to build confidence in links between genotype and phenotype and helps disambiguate gene annotations when they are evaluated in both evolutionary and metabolic network contexts.
Abstract: Comparative genomics is a powerful approach for studying variation in physiological traits as well as the evolution and ecology of microorganisms. Recent technological advances have enabled sequencing large numbers of related genomes in a single project, requiring computational tools for their integrated analysis. In particular, accurate annotations and identification of gene presence and absence are critical for understanding and modeling the cellular physiology of newly sequenced genomes. Although many tools are available to compare the gene contents of related genomes, new tools are necessary to enable close examination and curation of protein families from large numbers of closely related organisms, to integrate curation with the analysis of gain and loss, and to generate metabolic networks linking the annotations to observed phenotypes. We have developed ITEP, an Integrated Toolkit for Exploration of microbial Pan-genomes, to curate protein families, compute similarities to externally-defined domains, analyze gene gain and loss, and generate draft metabolic networks from one or more curated reference network reconstructions in groups of related microbial species among which the combination of core and variable genes constitute the their "pan-genomes". The ITEP toolkit consists of: (1) a series of modular command-line scripts for identification, comparison, curation, and analysis of protein families and their distribution across many genomes; (2) a set of Python libraries for programmatic access to the same data; and (3) pre-packaged scripts to perform common analysis workflows on a collection of genomes. ITEP’s capabilities include de novo protein family prediction, ortholog detection, analysis of functional domains, identification of core and variable genes and gene regions, sequence alignments and tree generation, annotation curation, and the integration of cross-genome analysis and metabolic networks for study of metabolic network evolution. ITEP is a powerful, flexible toolkit for generation and curation of protein families. ITEP's modular design allows for straightforward extension as analysis methods and tools evolve. By integrating comparative genomics with the development of draft metabolic networks, ITEP harnesses the power of comparative genomics to build confidence in links between genotype and phenotype and helps disambiguate gene annotations when they are evaluated in both evolutionary and metabolic network contexts.

113 citations

Journal ArticleDOI
TL;DR: Results provide evidence that MyD88 signaling is involved in phagocytosis and killing of live C. albicans yeasts and hyphae, and may represent one mechanism by which macrophages regulate innate responses specific to different pathogenic fungi.
Abstract: Toll-like receptors mediate macrophage recognition of microbial ligands, inducing expression of microbicidal molecules and cytokines via the adapter protein MyD88. We investigated the role of MyD88 in regulating murine macrophage responses to a pathogenic yeast (Candida albicans) and mold (Aspergillus fumigatus). Macrophages derived from bone marrow of MyD88-deficient mice (MyD88(-/-)) demonstrated impaired phagocytosis and intracellular killing of C. albicans compared to wild-type (MyD88(+/+)) macrophages. In contrast, ingestion and killing of A. fumigatus conidia was MyD88 independent. Cytokine production by MyD88(-/-) macrophages in response to C. albicans yeasts and hyphae was substantially decreased, but responses to A. fumigatus hyphae were preserved. These results provide evidence that MyD88 signaling is involved in phagocytosis and killing of live C. albicans, but not A. fumigatus. The differential role of MyD88 may represent one mechanism by which macrophages regulate innate responses specific to different pathogenic fungi.

113 citations

Journal ArticleDOI
TL;DR: The isotope-coded affinity tag (ICAT) approach to quantitative protein profiling, in this case proteins that copurified with lipid raft plasma membrane domains isolated from control and stimulated Jurkat human T cells, was applied and the accuracy of peptide and protein identifications made was estimated.

113 citations

Journal ArticleDOI
TL;DR: A microfluidic immunoassay device that permits sensitive and quantitative multiplexed protein measurements on nano-liter-scale samples, is scalable to large numbers of samples, and has the required sensitivity to measure the abundance of proteins derived from single mammalian cells is described.

112 citations

Journal ArticleDOI
TL;DR: The minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE) is modeled after the Minimum Information About a Microarray Experiment (MIAME) specification for microarray experiments.
Abstract: One purpose of the biomedical literature is to report results in sufficient detail that the methods of data collection and analysis can be independently replicated and verified. Here we present reporting guidelines for gene expression localization experiments: the minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE). MISFISHIE is modeled after the Minimum Information About a Microarray Experiment (MIAME) specification for microarray experiments. Both guidelines define what information should be reported without dictating a format for encoding that information. MISFISHIE describes six types of information to be provided for each experiment: experimental design, biomaterials and treatments, reporters, staining, imaging data and image characterizations. This specification has benefited the consortium within which it was developed and is expected to benefit the wider research community. We welcome feedback from the scientific community to help improve our proposal.

112 citations


Authors

Showing all 1292 results

NameH-indexPapersCitations
Younan Xia216943175757
Ruedi Aebersold182879141881
David Haussler172488224960
Steven P. Gygi172704129173
Nahum Sonenberg167647104053
Leroy Hood158853128452
Mark H. Ellisman11763755289
Wei Zhang112118993641
John Ralph10944239238
Eric H. Davidson10645447058
James R. Heath10342558548
Alan Aderem9924646682
Anne-Claude Gingras9733640714
Trey Ideker9730672276
Michael H. Gelb9450634714
Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202260
2021216
2020204
2019188
2018168