scispace - formally typeset
Search or ask a question
Institution

Institute for Systems Biology

NonprofitSeattle, Washington, United States
About: Institute for Systems Biology is a nonprofit organization based out in Seattle, Washington, United States. It is known for research contribution in the topics: Population & Proteomics. The organization has 1277 authors who have published 2777 publications receiving 353165 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The aim of this work is to enable multiscale modeling in systems medicine by enabling multi-modelling in medicine and to demonstrate the power of data-driven approaches.
Abstract: CITATION: Wolkenhauer, O. et al. 2014. Enabling multiscale modeling in systems medicine. Genome Medicine, 6:21, doi:10.1186/gm538.

82 citations

Journal ArticleDOI
11 Aug 2009-PLOS ONE
TL;DR: The data provide a valuable data set in understanding the molecular basis for growth inhibition response program of the AR in prostate cancer cells, which can be exploited for developing novel prostate cancer therapeutic strategies.
Abstract: Background The androgen receptor (AR) plays important roles in the development of male phenotype and in different human diseases including prostate cancers. The AR can act either as a promoter or a tumor suppressor depending on cell types. The AR proliferative response program has been well studied, but its prohibitive response program has not yet been thoroughly studied. Methodology/Principal Findings Previous studies found that PC3 cells expressing the wild-type AR inhibit growth and suppress invasion. We applied expression profiling to identify the response program of PC3 cells expressing the AR (PC3-AR) under different growth conditions (i.e. with or without androgens and at different concentration of androgens) and then applied the newly developed ChIP-seq technology to identify the AR binding regions in the PC3 cancer genome. A surprising finding was that the comparison of MOCK-transfected PC3 cells with AR-transfected cells identified 3,452 differentially expressed genes (two fold cutoff) even without the addition of androgens (i.e. in ethanol control), suggesting that a ligand independent activation or extremely low-level androgen activation of the AR. ChIP-Seq analysis revealed 6,629 AR binding regions in the cancer genome of PC3 cells with an FDR (false discovery rate) cut off of 0.05. About 22.4% (638 of 2,849) can be mapped to within 2 kb of the transcription start site (TSS). Three novel AR binding motifs were identified in the AR binding regions of PC3-AR cells, and two of them share a core consensus sequence CGAGCTCTTC, which together mapped to 27.3% of AR binding regions (1,808/6,629). In contrast, only about 2.9% (190/6,629) of AR binding sites contains the canonical AR matrix M00481, M00447 and M00962 (from the Transfac database), which is derived mostly from AR proliferative responsive genes in androgen dependent cells. In addition, we identified four top ranking co-occupancy transcription factors in the AR binding regions, which include TEF1 (Transcriptional enhancer factor), GATA (GATA transcription factors), OCT (octamer transcription factors) and PU1 (PU.1 transcription factor). Conclusions/Significance Our data provide a valuable data set in understanding the molecular basis for growth inhibition response program of the AR in prostate cancer cells, which can be exploited for developing novel prostate cancer therapeutic strategies.

82 citations

Journal ArticleDOI
TL;DR: The rat, mouse, and human genomic DNA sequences were used to examine these processes in more detail in comparisons over both shorter (rat-mouse) and longer (rodent-primate) times, and the generality of the covariation was demonstrated.
Abstract: The rates at which human genomic DNA changes by neutral substitution and insertion of certain families of transposable elements covary in large, megabase-sized segments. We used the rat, mouse, and human genomic DNA sequences to examine these processes in more detail in comparisons over both shorter (rat-mouse) and longer (rodent-primate) times, and demonstrated the generality of the covariation. Different families of transposable elements show distinctive insertion preferences and patterns of variation with substitution rates. SINEs are more abundant in GC-rich DNA, but the regional GC preference for insertion (monitored in young SINEs) differs between rodents and humans. In contrast, insertions in the rodent genomes are predominantly LINEs, which prefer to insert into AT-rich DNA in all three mammals. The insertion frequency of repeats other than SINEs correlates strongly positively with the frequency of substitutions in all species. However, correlations with SINEs show the opposite effects. The correlations are explained only in part by the GC content, indicating that other factors also contribute to the inherent tendency of DNA segments to change over evolutionary time.

82 citations

Journal ArticleDOI
TL;DR: UNLABELLED BioNetBuilder is an open-source client-server Cytoscape plugin that offers a user-friendly interface to create biological networks integrated from several databases, providing a platform-independent network interface to these public databases.
Abstract: BioNetBuilder is an open-source client-server Cytoscape plugin that offers a user-friendly interface to create biological networks integrated from several databases. Users can create networks for ∼1500 organisms, including common model organisms and human. Currently supported databases include: DIP, BIND, Prolinks, KEGG, HPRD, The BioGrid and GO, among others. The BioNetBuilder plugin client is available as a Java Webstart, providing a platform-independent network interface to these public databases. Availability: http://err.bio.nyu.edu/cytoscape/bionetbuilder/ Contact: iliana_avila-campillo@merck.com

82 citations

Patent
22 Dec 2006
TL;DR: In this paper, the authors present compositions and methods for detection and quantification of individual target molecules in biomolecular samples in particular, the invention relates to coded, labeled probes that are capable of binding to and identifying target molecules based on the probes' label codes.
Abstract: The present invention relates to compositions and methods for detection and quantification of individual target molecules in biomolecular samples. In particular, the invention relates to coded, labeled probes that are capable of binding to and identifying target molecules based on the probes' label codes. Methods of making and using such probes are also provided. The probes can be used in diagnostic, prognostic, quality control and screening applications.

82 citations


Authors

Showing all 1292 results

NameH-indexPapersCitations
Younan Xia216943175757
Ruedi Aebersold182879141881
David Haussler172488224960
Steven P. Gygi172704129173
Nahum Sonenberg167647104053
Leroy Hood158853128452
Mark H. Ellisman11763755289
Wei Zhang112118993641
John Ralph10944239238
Eric H. Davidson10645447058
James R. Heath10342558548
Alan Aderem9924646682
Anne-Claude Gingras9733640714
Trey Ideker9730672276
Michael H. Gelb9450634714
Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202260
2021216
2020204
2019188
2018168